NSGA2算法MATLAB

NSGA2算法MATLABNSGA2算法MATLAB实现(能够自定义优化函数)以前写了一个简单的NSGA2的算法能够用在ZDT1函数上:http://www.omegaxyz.com/2017/05/04/nsga2matlabzdt1/那个NSGA2的算法不具有普遍性,下面参考课国外的课题小组的代码重新修改了内部冗余内容,使之能够自定义优化函数。更多内容访问omegaxyz.comNSGA2的过程为:

大家好,又见面了,我是你们的朋友全栈君。

NSGA2算法MATLAB实现(能够自定义优化函数)
以前写了一个简单的NSGA2的算法能够用在ZDT1函数上:http://www.omegaxyz.com/2017/05/04/nsga2matlabzdt1/

那个NSGA2的算法不具有普遍性,下面参考课国外的课题小组的代码重新修改了内部冗余内容,使之能够自定义优化函数。
这里写图片描述
更多内容访问omegaxyz.com

NSGA2的过程为:

1、随机产生一个初始父代Po,在此基础上采用二元锦标赛选择、交叉和变异操作产生子代Qo, Po 和Qo群体规模均为N

2、将Pt和Qt并入到Rt中(初始时t=0),对Rt进行快速非支配解排序,构造其所有不同等级的非支配解集F1、F2……..

3、按照需要计算Fi中所有个体的拥挤距离,并根据拥挤比较运算符构造Pt+1,直至Pt+1规模为N,图中的Fi为F3

具体解释请见:http://www.omegaxyz.com/2017/04/14/nsga-iiintro/

C++代码请见(测试函数ZDT1):http://www.omegaxyz.com/2017/04/20/nsga2zdt1/

下面是完整版的代码:

①nsga2-optimization.m

function nsga_2_optimization
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%此处可以更改
%更多机器学习内容请访问omegaxyz.com
pop = 500; %种群数量
gen = 500; %迭代次数
M = 2; %目标数量
V = 30; %维度
min_range = zeros(1, V); %下界
max_range = ones(1,V); %上界
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
chromosome = initialize_variables(pop, M, V, min_range, max_range);
chromosome = non_domination_sort_mod(chromosome, M, V);

for i = 1 : gen
    pool = round(pop/2);
    tour = 2;
    parent_chromosome = tournament_selection(chromosome, pool, tour);
    mu = 20;
    mum = 20;
    offspring_chromosome = genetic_operator(parent_chromosome,M, V, mu, mum, min_range, max_range);
    [main_pop,~] = size(chromosome);
    [offspring_pop,~] = size(offspring_chromosome);
    clear temp
    intermediate_chromosome(1:main_pop,:) = chromosome;
    intermediate_chromosome(main_pop + 1 : main_pop + offspring_pop,1 : M+V) = offspring_chromosome;
    intermediate_chromosome = non_domination_sort_mod(intermediate_chromosome, M, V);
    chromosome = replace_chromosome(intermediate_chromosome, M, V, pop);
    if ~mod(i,100)
        clc;
        fprintf('%d generations completed\n',i);
    end
end

if M == 2
    plot(chromosome(:,V + 1),chromosome(:,V + 2),'*');
    xlabel('f_1'); ylabel('f_2');
    title('Pareto Optimal Front');
elseif M == 3
    plot3(chromosome(:,V + 1),chromosome(:,V + 2),chromosome(:,V + 3),'*');
    xlabel('f_1'); ylabel('f_2'); zlabel('f_3');
    title('Pareto Optimal Surface');
end

②initialize_variables.m

function f = initialize_variables(N, M, V, min_range, max_range)
min = min_range;
max = max_range;
K = M + V;
for i = 1 : N
    for j = 1 : V
        f(i,j) = min(j) + (max(j) - min(j))*rand(1);
    end
    f(i,V + 1: K) = evaluate_objective(f(i,:), M, V);
end

③non_domination_sort_mod.m

function f = non_domination_sort_mod(x, M, V)
[N, ~] = size(x);
clear m
front = 1;
F(front).f = [];
individual = [];

for i = 1 : N
    individual(i).n = 0;
    individual(i).p = [];
    for j = 1 : N
        dom_less = 0;
        dom_equal = 0;
        dom_more = 0;
        for k = 1 : M
            if (x(i,V + k) < x(j,V + k))
                dom_less = dom_less + 1;
            elseif (x(i,V + k) == x(j,V + k))
                dom_equal = dom_equal + 1;
            else
                dom_more = dom_more + 1;
            end
        end
        if dom_less == 0 && dom_equal ~= M
            individual(i).n = individual(i).n + 1;
        elseif dom_more == 0 && dom_equal ~= M
            individual(i).p = [individual(i).p j];
        end
    end   
    if individual(i).n == 0
        x(i,M + V + 1) = 1;
        F(front).f = [F(front).f i];
    end
end

while ~isempty(F(front).f)
   Q = [];
   for i = 1 : length(F(front).f)
       if ~isempty(individual(F(front).f(i)).p)
            for j = 1 : length(individual(F(front).f(i)).p)
                individual(individual(F(front).f(i)).p(j)).n = ...
                    individual(individual(F(front).f(i)).p(j)).n - 1;
                if individual(individual(F(front).f(i)).p(j)).n == 0
                    x(individual(F(front).f(i)).p(j),M + V + 1) = ...
                        front + 1;
                    Q = [Q individual(F(front).f(i)).p(j)];
                end
            end
       end
   end
   front =  front + 1;
   F(front).f = Q;
end

[temp,index_of_fronts] = sort(x(:,M + V + 1));
for i = 1 : length(index_of_fronts)
    sorted_based_on_front(i,:) = x(index_of_fronts(i),:);
end
current_index = 0;

%% Crowding distance

for front = 1 : (length(F) - 1)
    distance = 0;
    y = [];
    previous_index = current_index + 1;
    for i = 1 : length(F(front).f)
        y(i,:) = sorted_based_on_front(current_index + i,:);
    end
    current_index = current_index + i;
    sorted_based_on_objective = [];
    for i = 1 : M
        [sorted_based_on_objective, index_of_objectives] = ...
            sort(y(:,V + i));
        sorted_based_on_objective = [];
        for j = 1 : length(index_of_objectives)
            sorted_based_on_objective(j,:) = y(index_of_objectives(j),:);
        end
        f_max = ...
            sorted_based_on_objective(length(index_of_objectives), V + i);
        f_min = sorted_based_on_objective(1, V + i);
        y(index_of_objectives(length(index_of_objectives)),M + V + 1 + i)...
            = Inf;
        y(index_of_objectives(1),M + V + 1 + i) = Inf;
         for j = 2 : length(index_of_objectives) - 1
            next_obj  = sorted_based_on_objective(j + 1,V + i);
            previous_obj  = sorted_based_on_objective(j - 1,V + i);
            if (f_max - f_min == 0)
                y(index_of_objectives(j),M + V + 1 + i) = Inf;
            else
                y(index_of_objectives(j),M + V + 1 + i) = ...
                     (next_obj - previous_obj)/(f_max - f_min);
            end
         end
    end
    distance = [];
    distance(:,1) = zeros(length(F(front).f),1);
    for i = 1 : M
        distance(:,1) = distance(:,1) + y(:,M + V + 1 + i);
    end
    y(:,M + V + 2) = distance;
    y = y(:,1 : M + V + 2);
    z(previous_index:current_index,:) = y;
end
f = z();

④tournament_selection.m

function f = tournament_selection(chromosome, pool_size, tour_size)
[pop, variables] = size(chromosome);
rank = variables - 1;
distance = variables;
for i = 1 : pool_size
    for j = 1 : tour_size
        candidate(j) = round(pop*rand(1));
        if candidate(j) == 0
            candidate(j) = 1;
        end
        if j > 1
            while ~isempty(find(candidate(1 : j - 1) == candidate(j)))
                candidate(j) = round(pop*rand(1));
                if candidate(j) == 0
                    candidate(j) = 1;
                end
            end
        end
    end
    for j = 1 : tour_size
        c_obj_rank(j) = chromosome(candidate(j),rank);
        c_obj_distance(j) = chromosome(candidate(j),distance);
    end
    min_candidate = ...
        find(c_obj_rank == min(c_obj_rank));
    if length(min_candidate) ~= 1
        max_candidate = ...
        find(c_obj_distance(min_candidate) == max(c_obj_distance(min_candidate)));
        if length(max_candidate) ~= 1
            max_candidate = max_candidate(1);
        end
        f(i,:) = chromosome(candidate(min_candidate(max_candidate)),:);
    else
        f(i,:) = chromosome(candidate(min_candidate(1)),:);
    end
end

⑤genetic_operator.m

function f = genetic_operator(parent_chromosome, M, V, mu, mum, l_limit, u_limit)
[N,m] = size(parent_chromosome);

clear m
p = 1;
was_crossover = 0;
was_mutation = 0;


for i = 1 : N
    % With 90 % probability perform crossover
    if rand(1) < 0.9
        % Initialize the children to be null vector.
        child_1 = [];
        child_2 = [];
        % Select the first parent
        parent_1 = round(N*rand(1));
        if parent_1 < 1
            parent_1 = 1;
        end
        % Select the second parent
        parent_2 = round(N*rand(1));
        if parent_2 < 1
            parent_2 = 1;
        end
        % Make sure both the parents are not the same. 
        while isequal(parent_chromosome(parent_1,:),parent_chromosome(parent_2,:))
            parent_2 = round(N*rand(1));
            if parent_2 < 1
                parent_2 = 1;
            end
        end
        % Get the chromosome information for each randomnly selected
        % parents
        parent_1 = parent_chromosome(parent_1,:);
        parent_2 = parent_chromosome(parent_2,:);
        % Perform corssover for each decision variable in the chromosome.
        for j = 1 : V
            % SBX (Simulated Binary Crossover).
            % For more information about SBX refer the enclosed pdf file.
            % Generate a random number
            u(j) = rand(1);
            if u(j) <= 0.5
                bq(j) = (2*u(j))^(1/(mu+1));
            else
                bq(j) = (1/(2*(1 - u(j))))^(1/(mu+1));
            end
            % Generate the jth element of first child
            child_1(j) = ...
                0.5*(((1 + bq(j))*parent_1(j)) + (1 - bq(j))*parent_2(j));
            % Generate the jth element of second child
            child_2(j) = ...
                0.5*(((1 - bq(j))*parent_1(j)) + (1 + bq(j))*parent_2(j));
            % Make sure that the generated element is within the specified
            % decision space else set it to the appropriate extrema.
            if child_1(j) > u_limit(j)
                child_1(j) = u_limit(j);
            elseif child_1(j) < l_limit(j)
                child_1(j) = l_limit(j);
            end
            if child_2(j) > u_limit(j)
                child_2(j) = u_limit(j);
            elseif child_2(j) < l_limit(j)
                child_2(j) = l_limit(j);
            end
        end
        child_1(:,V + 1: M + V) = evaluate_objective(child_1, M, V);
        child_2(:,V + 1: M + V) = evaluate_objective(child_2, M, V);
        was_crossover = 1;
        was_mutation = 0;
    % With 10 % probability perform mutation. Mutation is based on
    % polynomial mutation. 
    else
        % Select at random the parent.
        parent_3 = round(N*rand(1));
        if parent_3 < 1
            parent_3 = 1;
        end
        % Get the chromosome information for the randomnly selected parent.
        child_3 = parent_chromosome(parent_3,:);
        % Perform mutation on eact element of the selected parent.
        for j = 1 : V
           r(j) = rand(1);
           if r(j) < 0.5
               delta(j) = (2*r(j))^(1/(mum+1)) - 1;
           else
               delta(j) = 1 - (2*(1 - r(j)))^(1/(mum+1));
           end
           % Generate the corresponding child element.
           child_3(j) = child_3(j) + delta(j);
           % Make sure that the generated element is within the decision
           % space.
           if child_3(j) > u_limit(j)
               child_3(j) = u_limit(j);
           elseif child_3(j) < l_limit(j)
               child_3(j) = l_limit(j);
           end
        end
        child_3(:,V + 1: M + V) = evaluate_objective(child_3, M, V);
        % Set the mutation flag
        was_mutation = 1;
        was_crossover = 0;
    end
    if was_crossover
        child(p,:) = child_1;
        child(p+1,:) = child_2;
        was_cossover = 0;
        p = p + 2;
    elseif was_mutation
        child(p,:) = child_3(1,1 : M + V);
        was_mutation = 0;
        p = p + 1;
    end
end
f = child;

⑥replace_chromosome.m

function f  = replace_chromosome(intermediate_chromosome, M, V,pop)


[N, m] = size(intermediate_chromosome);

% Get the index for the population sort based on the rank
[temp,index] = sort(intermediate_chromosome(:,M + V + 1));

clear temp m

% Now sort the individuals based on the index
for i = 1 : N
    sorted_chromosome(i,:) = intermediate_chromosome(index(i),:);
end

% Find the maximum rank in the current population
max_rank = max(intermediate_chromosome(:,M + V + 1));

% Start adding each front based on rank and crowing distance until the
% whole population is filled.
previous_index = 0;
for i = 1 : max_rank
    % Get the index for current rank i.e the last the last element in the
    % sorted_chromosome with rank i. 
    current_index = max(find(sorted_chromosome(:,M + V + 1) == i));
    % Check to see if the population is filled if all the individuals with
    % rank i is added to the population. 
    if current_index > pop
        % If so then find the number of individuals with in with current
        % rank i.
        remaining = pop - previous_index;
        % Get information about the individuals in the current rank i.
        temp_pop = ...
            sorted_chromosome(previous_index + 1 : current_index, :);
        % Sort the individuals with rank i in the descending order based on
        % the crowding distance.
        [temp_sort,temp_sort_index] = ...
            sort(temp_pop(:, M + V + 2),'descend');
        % Start filling individuals into the population in descending order
        % until the population is filled.
        for j = 1 : remaining
            f(previous_index + j,:) = temp_pop(temp_sort_index(j),:);
        end
 return;
    elseif current_index < pop
        % Add all the individuals with rank i into the population.
        f(previous_index + 1 : current_index, :) = ...
            sorted_chromosome(previous_index + 1 : current_index, :);
    else
        % Add all the individuals with rank i into the population.
        f(previous_index + 1 : current_index, :) = ...
            sorted_chromosome(previous_index + 1 : current_index, :);
 return;
    end
    % Get the index for the last added individual.
    previous_index = current_index;
end

⑦自定义评价函数(我选用的ZDT1函数)

function f = evaluate_objective(x, M, V)
f = [];
f(1) = x(1);
g = 1;
sum = 0;
for i = 1:V
    sum = sum + x(i);
end
sum = sum + 9*(sum / (V-1));
g = g + sum;
f(2) = g * (1 - sqrt(x(1) / g));
end

500个种群运行500代的结果:
这里写图片描述
这里写图片描述
代码打包下载:http://download.csdn.net/download/xyisv/10217700
更多内容访问omegaxyz.com

网站文章采用知识共享许可协议BY-NC-SA4.0授权
© 2018 • OmegaXYZ-版权所有 转载请注明出处

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/144299.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • mutual information loss_munication

    mutual information loss_munication今天挺paperreading的时候,听到了最大化互信息,还不清楚互信息是个什么东东,google了一下,从http://en.wikipedia.org/wiki/Mutual_information摘过来了:    DefinitionofmutualinformationFormally,themutualinformationoftwod

  • Nginx 报错 413 Request Entity Too Large 的解决方法

    Nginx 报错 413 Request Entity Too Large 的解决方法

  • datagrip 激活码最新(JetBrains全家桶)

    (datagrip 激活码最新)本文适用于JetBrains家族所有ide,包括IntelliJidea,phpstorm,webstorm,pycharm,datagrip等。IntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,下面是详细链接哦~https://javaforall.cn/100143.html…

  • 进程调度程序设计实验报告_进程调度模拟程序设计实验报告

    进程调度程序设计实验报告_进程调度模拟程序设计实验报告进程调度的设计与实现中文摘要无论是在批处理系统还是分时系统中,用户进程数一般都多于处理机数、这将导致它们互相争夺处理机。另外,系统进程也同样需要使用处理机。这就要求进程调度程序按一定的策略,动态地把处理机分配给处于就绪队列中的某一个进程,以使之执行。关键词进程调度C++优先级生命周期pidstatus前言实验目的1、综合应用下列知识点设计并实现操作系统的进程调度:邻接表,布…

  • grep 命令详解_grep命令详解

    grep 命令详解_grep命令详解一:grep命令的基本概念和用途grep命令是linux中一种强大的文本搜索工具,它能使用正则表达式搜索文本,并把匹配的行打印出来。在一个或多个文件中搜素字符串模式,如果字符串模式包括空格,也必须被引用,模式后的所有字符串被看作文件名。搜索的结果被送到标准输出(stdout),不影响原文件内容。grep也可以用于shell脚本,因为grep通过返回一个状态值来说明搜索的结果,如果模式搜索成功,则返回0;如果搜索不成功,则返回1;如果搜索的文件不存在,则返回2;我们利用这些返回值就可以进行一些自动化的文

  • html中相对定位怎么写,css相对定位「建议收藏」

    html中相对定位怎么写,css相对定位「建议收藏」定位的四种模式:static,relative,absolute,fixed定位的四个位置:left,right,top,bottom定位属性:position,有四种状态值1.static:静态定位,按元素在文档流中的顺序排列,这是默认值,四个位置无效2.relative:相对定位,元素相对于原来它在文档流中的位置进行定位,四个位置有效3.absolute:绝对定位,元素相对于它的定位父级定位,…

    2022年10月25日

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号