mutual information loss_munication

mutual information loss_munication今天挺paperreading的时候,听到了最大化互信息,还不清楚互信息是个什么东东,google了一下,从http://en.wikipedia.org/wiki/Mutual_information摘过来了:    DefinitionofmutualinformationFormally,themutualinformationoftwod

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

今天挺paper reading的时候,听到了最大化互信息,还不清楚互信息是个什么东东,google了一下,从

http://en.wikipedia.org/wiki/Mutual_information

摘过来了:

 

 

 

 

Definition of mutual information

Formally, the mutual information of two discrete random variables X and Y can be defined as:

I(X;Y) = /sum_{y /in Y} /sum_{x /in X} p(x,y) /log{ /left( /frac{p(x,y)}{p_1(x)/,p_2(y)} /right) }, /,/!

where p(x,y) is the joint probability distribution function of X and Y, and p1(x) and p2(y) are the marginal probability distribution functions of X and Y respectively.

In the continuous case, we replace summation by a definite double integral:

I(X;Y) = /int_Y /int_X p(x,y) /log{ /left( /frac{p(x,y)}{p_1(x)/,p_2(y)} /right) } /; dx /,dy,

where p(x,y) is now the joint probability density function of X and Y, and p1(x) and p2(y) are the marginal probability density functions of X and Y respectively.

These definitions are ambiguous because the base of the log function is not specified. To disambiguate, the function I could be parameterized as I(X,Y,b) where b is the base. Alternatively, since the most common unit of measurement of mutual information is the bit, a base of 2 could be specified.

Intuitively, mutual information measures the information that X and Y share: it measures how much knowing one of these variables reduces our uncertainty about the other. For example, if X and Y are independent, then knowing X does not give any information about Y and vice versa, so their mutual information is zero. At the other extreme, if X and Y are identical then all information conveyed by X is shared with Y: knowing X determines the value of Y and vice versa. As a result, the mutual information is the same as the uncertainty contained in Y (or X) alone, namely the entropy of Y (or X: clearly if X and Y are identical they have equal entropy).

Mutual information quantifies the dependence between the joint distribution of X and Y and what the joint distribution would be if X and Y were independent. Mutual information is a measure of dependence in the following sense: I(X; Y) = 0 if and only if X and Y are independent random variables. This is easy to see in one direction: if X and Y are independent, then p(x,y) = p(x) × p(y), and therefore:

/log{ /left( /frac{p(x,y)}{p(x)/,p(y)} /right) } = /log 1 = 0. /,/!

Moreover, mutual information is nonnegative (i.e. I(X;Y) ≥ 0; see below) and symmetric (i.e. I(X;Y) = I(Y;X)).

[edit] Relation to other quantities

Mutual information can be equivalently expressed as

/begin{align} I(X;Y) & {} = H(X) - H(X|Y) // & {} = H(Y) - H(Y|X) // & {} = H(X) + H(Y) - H(X,Y) /end{align}

where H(X) and H(Y) are the marginal entropies, H(X|Y) and H(Y|X) are the conditional entropies, and H(X,Y) is the joint entropy of X and Y. Since H(X) ≥ H(X|Y), this characterization is consistent with the nonnegativity property stated above.

Intuitively, if entropy H(X) is regarded as a measure of uncertainty about a random variable, then H(X|Y) is a measure of what Y does not say about X. This is “the amount of uncertainty remaining about X after Y is known”, and thus the right side of the first of these equalities can be read as “the amount of uncertainty in X, minus the amount of uncertainty in X which remains after Y is known”, which is equivalent to “the amount of uncertainty in X which is removed by knowing Y“. This corroborates the intuitive meaning of mutual information as the amount of information (that is, reduction in uncertainty) that knowing either variable provides about the other.

Note that in the discrete case H(X|X) = 0 and therefore H(X) = I(X;X). Thus I(X;X) ≥ I(X;Y), and one can formulate the basic principle that a variable contains more information about itself than any other variable can provide.

Mutual information can also be expressed as a Kullback-Leibler divergence, of the product p(x) × p(y) of the marginal distributions of the two random variables X and Y, from p(x,y) the random variables’ joint distribution:

I(X;Y) = D_{/mathrm{KL}}(p(x,y)/|p(x)p(y)).

Furthermore, let p(x|y) = p(x, y) / p(y). Then

/begin{align} I(X;Y) & {} = /sum_y p(y) /sum_x p(x|y) /log_2 /frac{p(x|y)}{p(x)} // & {} = /sum_y p(y) /; D_{/mathrm{KL}}(p(x|y)/|p(x)) // & {} = /mathbb{E}_Y/{D_{/mathrm{KL}}(p(x|y)/|p(x))/}. /end{align}

Thus mutual information can thus also be understood as the expectation of the Kullback-Leibler divergence of the univariate distribution p(x) of X from the conditional distribution p(x|y) of X given Y: the more different the distributions p(x|y) and p(x), the greater the information gain.

[edit] Variations of the mutual information

Several variations on the mutual information have been proposed to suit various needs. Among these are normalized variants and generalizations to more than two variables.

[edit] Metric

Many applications require a metric, that is, a distance measure between points. The quantity

d(X,Y) = H(X,Y) − I(X;Y)

satisfies the basic properties of a metric; most importantly, the triangle inequality, but also non-negativity, indiscernability and symmetry. In addition, one also has d(X,Y) /le H(X,Y), and so

D(X,Y) = d(x,y)/H(X,Y) /le 1

The metric D is a universal metric, in that if any other distance measure places X and Y close-by, then the D will also judge them close.[1].

[edit] Conditional mutual information

Sometimes it is useful to express the mutual information of two random variables conditioned on a third.

I(X;Y|Z) = /mathbb E_Z /big(I(X;Y)|Z/big) = /sum_{z/in Z} /sum_{y/in Y} /sum_{x/in X} p_Z(z) p_{X,Y|Z}(x,y|z) /log /frac{p_{X,Y|Z}(x,y|z)}{p_{X|Z}(x|z)p_{Y|Z}(y|z)},

which can be simplified as

I(X;Y|Z) = /sum_{z/in Z} /sum_{y/in Y} /sum_{x/in X} p_{X,Y,Z}(x,y,z) /log /frac{p_Z(z)p_{X,Y,Z}(x,y,z)}{p_{X,Z}(x,z)p_{Y,Z}(y,z)}.

Conditioning on a third random variable may either increase or decrease the mutual information, but it is always true that

I(X;Y|Z) /ge 0

for discrete, jointly distributed random variables X, Y, Z. This result has been used as a basic building block for proving other inequalities in information theory.

[edit] Multivariate mutual information

Several generalizations of mutual information to more than two random variables have been proposed, such as total correlation and interaction information. If Shannon entropy is viewed as a signed measure in the context of information diagrams, as explained in the article Information theory and measure theory, then the only definition of multivariate mutual information that makes sense is as follows:

I(X1) = H(X1),
I(X1 | X2) = H(X1 | X2)

and for n > 1,

I(X_1;/,.../,;X_n) = I(X_1;/,.../,;X_{n-1}) - I(X_1;/,.../,;X_{n-1}|X_n),

where (as above) we define

I(X_1;/,.../,;X_{n-1}|X_n) = /mathbb E_{X_n} /big(I(X_1;/,.../,;X_{n-1})|X_n/big).

(This definition of multivariate mutual information is identical to that of interaction information except for a change in sign when the number of random variables is odd.)

[edit] Applications

Some have criticized the blind application of information diagrams used to derive the above definition, and indeed it has found rather limited practical application, since it is difficult to visualize or grasp the significance of this quantity for a large number of random variables. It can be zero, positive, or negative for any n /ge 3.

One high-dimensional generalization scheme that maximizes the mutual information between the joint distribution and other target variables is found be useful in feature selection.

[edit] Normalized variants

Normalized variants of the mutual information are provided by the coefficients of constraint (Coombs, Dawes & Tversky 1970) or uncertainty coefficient (Press & Flannery 1988)

C_{XY}=/frac{I(X;Y)}{H(Y)} ~~~~/mbox{and}~~~~ C_{YX}=/frac{I(X;Y)}{H(X)}

The two coefficients are not necessarily equal. A more useful and symmetric scaled information measure is the redundancy[citation needed]

R= /frac{I(X;Y)}{H(X)+H(Y)}

which attains a minimum of zero when the variables are independent and a maximum value of

R_{/max }=/frac{/min (H(X),H(Y))}{H(X)+H(Y)}

when one variable becomes completely redundant with the knowledge of the other. See also Redundancy (information theory). Another symmetrical measure is the symmetric uncertainty (Witten & Frank 2005), given by

U(X,Y) = 2R = 2 /frac{I(X;Y)}{H(X)+H(Y)}

which represents a weighted average of the two uncertainty coefficients (Press & Flannery 1988).

Other normalized versions are provided by the following expressions (Yao 2003, Strehl & Ghosh 2002).

/frac{I(X;Y)}{/operatorname{min}(H(X),H(Y))}, ~~~~~~~ /frac{I(X;Y)}{H(X,Y)}, ~~~~~~~ /frac{I(X;Y)}{/sqrt{H(X)H(Y)}}

The quantity

D^/prime(X,Y)=1-/frac{I(X;Y)}{/operatorname{max}(H(X),H(Y))}

is a metric, i.e. satisfies the triangle inequality, etc. The metric D^/prime is also a universal metric.[2]

[edit] Weighted variants

In the traditional formulation of the mutual information,

I(X;Y) = /sum_{y /in Y} /sum_{x /in X} p(x,y) /log /frac{p(x,y)}{p(x)/,p(y)},

each event or object specified by (x,y) is weighted by the corresponding probability p(x,y). This assumes that all objects or events are equivalent apart from their probability of occurrence. However, in some applications it may be the case that certain objects or events are more significant than others, or that certain patterns of association are more semantically important than others.

For example, the deterministic mapping {(1,1),(2,2),(3,3)} may be viewed as stronger (by some standard) than the deterministic mapping {(1,3),(2,1),(3,2)}, although these relationships would yield the same mutual information. This is because the mutual information is not sensitive at all to any inherent ordering in the variable values (Cronbach 1954, Coombs & Dawes 1970, Lockhead 1970), and is therefore not sensitive at all to the form of the relational mapping between the associated variables. If it is desired that the former relation — showing agreement on all variable values — be judged stronger than the later relation, then it is possible to use the following weighted mutual information (Guiasu 1977)

I(X;Y) = /sum_{y /in Y} /sum_{x /in X} w(x,y) p(x,y) /log /frac{p(x,y)}{p(x)/,p(y)},

which places a weight w(x,y) on the probability of each variable value co-occurrence, p(x,y). This allows that certain probabilities may carry more or less significance than others, thereby allowing the quantification of relevant holistic or prägnanz factors. In the above example, using larger relative weights for w(1,1), w(2,2), and w(3,3) would have the effect of assessing greater informativeness for the relation {(1,1),(2,2),(3,3)} than for the relation {(1,3),(2,1),(3,2)}, which may be desirable in some cases of pattern recognition, and the like. There has been little mathematical work done on the weighted mutual information and its properties, however.

[edit] Absolute mutual information

Using the ideas of Kolmogorov complexity, one can consider the mutual information of two sequences independent of any probability distribution:

IK(X;Y) = K(X) − K(X | Y).

To establish that this quantity is symmetric up to a logarithmic factor (I_K(X;Y) /approx I_K(Y;X)) requires the chain rule for Kolmogorov complexity (Li 1997). Approximations of this quantity via compression can be used to define a distance measure to perform a hierarchical clustering of sequences without having any domain knowledge of the sequences (Cilibrasi 2005).

[edit] Applications of mutual information

In many applications, one wants to maximize mutual information (thus increasing dependencies), which is often equivalent to minimizing conditional entropy. Examples include:

[edit] See also

[edit] References

  1. ^ Alexander Kraskov, Harald Stögbauer, Ralph G. Andrzejak, and Peter Grassberger, “Hierarchical Clustering Based on Mutual Information”, (2003) ArXiv q-bio/0311039
  2. ^ Kraskov, et al. ibid.
  • Coombs, C. H., Dawes, R. M. & Tversky, A. (1970), Mathematical Psychology: An Elementary Introduction, Prentice-Hall, Englewood Cliffs, NJ.
  • Cronbach L. J. (1954). On the non-rational application of information measures in psychology, in H Quastler, ed., Information Theory in Psychology: Problems and Methods, Free Press, Glencoe, Illinois, pp. 14—30.
  • Kenneth Ward Church and Patrick Hanks. Word association norms, mutual information, and lexicography, Proceedings of the 27th Annual Meeting of the Association for Computational Linguistics, 1989.
  • Guiasu, Silviu (1977), Information Theory with Applications, McGraw-Hill, New York.
  • Lockhead G. R. (1970). Identification and the form of multidimensional discrimination space, Journal of Experimental Psychology 85(1), 1-10.
  • Athanasios Papoulis. Probability, Random Variables, and Stochastic Processes, second edition. New York: McGraw-Hill, 1984. (See Chapter 15.)
  • Press, W. H., Flannery, B. P., Teukolsky, S. A. & Vetterling, W. T. (1988), Numerical Recipes in C: The Art of Scientific Computing, Cambridge University Press, Cambridge, p. 634
  • Witten, Ian H. & Frank, Eibe (2005), Data Mining: Practical Machine Learning Tools and Techniques, Morgan Kaufmann, Amsterdam.
  • Yao, Y. Y. (2003) Information-theoretic measures for knowledge discovery and data mining, in Entropy Measures, Maximum Entropy Principle and Emerging Applications , Karmeshu (ed.), Springer, pp. 115-136.
  • Peng, H.C., Long, F., and Ding, C., “Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 27, No. 8, pp.1226-1238, 2005. Program
  • Andre S. Ribeiro, Stuart A. Kauffman, Jason Lloyd-Price, Bjorn Samuelsson, and Joshua Socolar, (2008) “Mutual Information in Random Boolean models of regulatory networks”, Physical Review E, Vol.77, No.1. arXiv:0707.3642.
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/192347.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

  • plsqldev715 注册码「建议收藏」

    plsqldev715 注册码「建议收藏」plsqldev715注册码QVJTSV-KNNSSK-G4UUL4-354LGX-FRZ8X3112243.957xs374ca

  • 树的高度和深度 | 结点的高度和深度「建议收藏」

    树的高度和深度 | 结点的高度和深度「建议收藏」有个缺点,看到什么东西不管是不是重点只要说不通总是爱钻牛角尖。对于树的高度和深度(以及结点的高度和深度)看了几本不同的书,都有各自的说法,多方查证吧,花了很多时间,最后归纳一个能说服我的说法吧。(´。•ᵕ•。`)♡树的高度和深度深度是从上往下定义的,从根结点开始数,高度是从下往上定义的,从叶子结点开始数。这个涉及到结点的层数,有的教材规定根结点在第0层,有的则规定根结点在第一层。…

  • 关于Thread.IsBackground属性的理解

    关于Thread.IsBackground属性的理解C#中,Thread类有一个IsBackground的属性.MSDN上对它的解释是:获取或设置一个值,该值指示某个线程是否为后台线程。个人感觉这样的解释等于没有解释..Net中的线程,可以分为后台线程和前台线程。后台线程与前台线程并没有本质的区别,它们之间唯一的区别就是:后台线程不会防止应用程序的进程被终止掉。呵呵,这句话读出来好像并不那么好懂.其实,说白了就是当前台线程都结束了的时候,…

    2022年10月16日
  • 制作WIN7+XP+DOS+PE多系统启动光盘

    制作WIN7+XP+DOS+PE多系统启动光盘本文详细介绍了怎样制作自定义的多系统启动光盘的流程,从零开始!达到完成系统盘制作的目的。

  • ES6开发_php的开发环境

    ES6开发_php的开发环境ES6的开发环境搭建

  • mybatis log plugin 激活码[免费获取]

    (mybatis log plugin 激活码)JetBrains旗下有多款编译器工具(如:IntelliJ、WebStorm、PyCharm等)在各编程领域几乎都占据了垄断地位。建立在开源IntelliJ平台之上,过去15年以来,JetBrains一直在不断发展和完善这个平台。这个平台可以针对您的开发工作流进行微调并且能够提供…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号