python中griddata的外插值_griddata二维插值[通俗易懂]

python中griddata的外插值_griddata二维插值[通俗易懂]”””SimpleN-Dinterpolation..versionadded::0.9″””##Copyright(C)PauliVirtanen,2010.##DistributedunderthesameBSDlicenseasScipy.###Note:thisfileshouldberunthroughtheMakotemplateen…

大家好,又见面了,我是你们的朋友全栈君。

“””Simple N-D interpolation

.. versionadded:: 0.9″””

#

#Copyright (C) Pauli Virtanen, 2010.#

#Distributed under the same BSD license as Scipy.#

#

#Note: this file should be run through the Mako template engine before#feeding it to Cython.#

#Run “generate_qhull.py“ to regenerate the “qhull.c“ file#cimport cythonfromlibc.float cimport DBL_EPSILONfromlibc.math cimport fabs, sqrtimportnumpy as npimportscipy.spatial.qhull as qhull

cimport scipy.spatial.qhull as qhullimportwarnings#——————————————————————————#Numpy etc.#——————————————————————————

cdef externfrom “numpy/ndarrayobject.h”:

cdef enum:

NPY_MAXDIMS

ctypedef fused double_or_complex:

double

double complex#——————————————————————————#Interpolator base class#——————————————————————————

classNDInterpolatorBase(object):”””Common routines for interpolators.

.. versionadded:: 0.9″””

def __init__(self, points, values, fill_value=np.nan, ndim=None,

rescale=False, need_contiguous=True, need_values=True):”””Check shape of points and values arrays, and reshape values to

(npoints, nvalues). Ensure the `points` and values arrays are

C-contiguous, and of correct type.”””

ifisinstance(points, qhull.Delaunay):#Precomputed triangulation was passed in

ifrescale:raise ValueError(“Rescaling is not supported when passing”

“a Delaunay triangulation as “points“.”)

self.tri=points

points=points.pointselse:

self.tri=None

points=_ndim_coords_from_arrays(points)

values=np.asarray(values)

_check_init_shape(points, values, ndim=ndim)ifneed_contiguous:

points= np.ascontiguousarray(points, dtype=np.double)ifneed_values:

self.values_shape= values.shape[1:]if values.ndim == 1:

self.values=values[:,None]elif values.ndim == 2:

self.values=valueselse:

self.values=values.reshape(values.shape[0],

np.prod(values.shape[1:]))#Complex or real?

self.is_complex =np.issubdtype(self.values.dtype, np.complexfloating)ifself.is_complex:ifneed_contiguous:

self.values=np.ascontiguousarray(self.values,

dtype=np.complex128)

self.fill_value=complex(fill_value)else:ifneed_contiguous:

self.values= np.ascontiguousarray(self.values, dtype=np.double)

self.fill_value=float(fill_value)if notrescale:

self.scale=None

self.points=pointselse:#scale to unit cube centered at 0

self.offset = np.mean(points, axis=0)

self.points= points -self.offset

self.scale= self.points.ptp(axis=0)

self.scale[~(self.scale > 0)] = 1.0 #avoid division by 0

self.points /=self.scaledef_check_call_shape(self, xi):

xi=np.asanyarray(xi)if xi.shape[-1] != self.points.shape[1]:raise ValueError(“number of dimensions in xi does not match x”)returnxidef_scale_x(self, xi):if self.scale isNone:returnxielse:return (xi – self.offset) /self.scaledef __call__(self, *args):”””interpolator(xi)

Evaluate interpolator at given points.

Parameters

———-

x1, x2, … xn: array-like of float

Points where to interpolate data at.

x1, x2, … xn can be array-like of float with broadcastable shape.

or x1 can be array-like of float with shape “(…, ndim)“”””xi= _ndim_coords_from_arrays(args, ndim=self.points.shape[1])

xi=self._check_call_shape(xi)

shape=xi.shape

xi= xi.reshape(-1, shape[-1])

xi= np.ascontiguousarray(xi, dtype=np.double)

xi=self._scale_x(xi)ifself.is_complex:

r=self._evaluate_complex(xi)else:

r=self._evaluate_double(xi)return np.asarray(r).reshape(shape[:-1] +self.values_shape)

cpdef _ndim_coords_from_arrays(points, ndim=None):”””Convert a tuple of coordinate arrays to a (…, ndim)-shaped array.”””cdef ssize_t j, nif isinstance(points, tuple) and len(points) == 1:#handle argument tuple

points =points[0]ifisinstance(points, tuple):

p= np.broadcast_arrays(*points)

n=len(p)for j in range(1, n):if p[j].shape !=p[0].shape:raise ValueError(“coordinate arrays do not have the same shape”)

points= np.empty(p[0].shape + (len(points),), dtype=float)for j, item inenumerate(p):

points[…,j]=itemelse:

points=np.asanyarray(points)if points.ndim == 1:if ndim isNone:

points= points.reshape(-1, 1)else:

points= points.reshape(-1, ndim)returnpoints

cdef _check_init_shape(points, values, ndim=None):”””Check shape of points and values arrays”””

if values.shape[0] !=points.shape[0]:raise ValueError(“different number of values and points”)if points.ndim != 2:raise ValueError(“invalid shape for input data points”)if points.shape[1] < 2:raise ValueError(“input data must be at least 2-D”)if ndim is not None and points.shape[1] !=ndim:raise ValueError(“this mode of interpolation available only for”

“%d-D data” %ndim)#——————————————————————————#Linear interpolation in N-D#——————————————————————————

classLinearNDInterpolator(NDInterpolatorBase):”””LinearNDInterpolator(points, values, fill_value=np.nan, rescale=False)

Piecewise linear interpolant in N dimensions.

.. versionadded:: 0.9

Methods

——-

__call__

Parameters

———-

points : ndarray of floats, shape (npoints, ndims); or Delaunay

Data point coordinates, or a precomputed Delaunay triangulation.

values : ndarray of float or complex, shape (npoints, …)

Data values.

fill_value : float, optional

Value used to fill in for requested points outside of the

convex hull of the input points. If not provided, then

the default is “nan“.

rescale : bool, optional

Rescale points to unit cube before performing interpolation.

This is useful if some of the input dimensions have

incommensurable units and differ by many orders of magnitude.

Notes

—–

The interpolant is constructed by triangulating the input data

with Qhull [1]_, and on each triangle performing linear

barycentric interpolation.

Examples

——–

We can interpolate values on a 2D plane:

>>> from scipy.interpolate import LinearNDInterpolator

>>> import matplotlib.pyplot as plt

>>> np.random.seed(0)

>>> x = np.random.random(10) – 0.5

>>> y = np.random.random(10) – 0.5

>>> z = np.hypot(x, y)

>>> X = np.linspace(min(x), max(x))

>>> Y = np.linspace(min(y), max(y))

>>> X, Y = np.meshgrid(X, Y) # 2D grid for interpolation

>>> interp = LinearNDInterpolator(list(zip(x, y)), z)

>>> Z = interp(X, Y)

>>> plt.pcolormesh(X, Y, Z, shading=’auto’)

>>> plt.plot(x, y, “ok”, label=”input point”)

>>> plt.legend()

>>> plt.colorbar()

>>> plt.axis(“equal”)

>>> plt.show()

See also

——–

griddata :

Interpolate unstructured D-D data.

NearestNDInterpolator :

Nearest-neighbor interpolation in N dimensions.

CloughTocher2DInterpolator :

Piecewise cubic, C1 smooth, curvature-minimizing interpolant in 2D.

References

———-

.. [1] http://www.qhull.org/”””

def __init__(self, points, values, fill_value=np.nan, rescale=False):

NDInterpolatorBase.__init__(self, points, values, fill_value=fill_value,

rescale=rescale)if self.tri isNone:

self.tri=qhull.Delaunay(self.points)def_evaluate_double(self, xi):return self._do_evaluate(xi, 1.0)def_evaluate_complex(self, xi):return self._do_evaluate(xi, 1.0j)

@cython.boundscheck(False)

@cython.wraparound(False)def _do_evaluate(self, const double[:,::1] xi, double_or_complex dummy):

cdef const double_or_complex[:,::1] values =self.values

cdef double_or_complex[:,::1] out

cdef const double[:,::1] points =self.points

cdef const int[:,::1] simplices =self.tri.simplices

cdef double c[NPY_MAXDIMS]

cdef double_or_complex fill_value

cdef int i, j, k, m, ndim, isimplex, inside, start, nvalues

cdef qhull.DelaunayInfo_t info

cdef double eps, eps_broad

ndim= xi.shape[1]

start=0

fill_value=self.fill_value

qhull._get_delaunay_info(&info, self.tri, 1, 0, 0)

out= np.empty((xi.shape[0], self.values.shape[1]),

dtype=self.values.dtype)

nvalues= out.shape[1]

eps= 100 *DBL_EPSILON

eps_broad=sqrt(DBL_EPSILON)

with nogil:for i inrange(xi.shape[0]):#1) Find the simplex

isimplex= qhull._find_simplex(&info, c,&xi[0,0] + i*ndim,&start, eps, eps_broad)#2) Linear barycentric interpolation

if isimplex == -1:#don’t extrapolate

for k inrange(nvalues):

out[i,k]=fill_valuecontinue

for k inrange(nvalues):

out[i,k]=0for j in range(ndim+1):for k inrange(nvalues):

m=simplices[isimplex,j]

out[i,k]= out[i,k] + c[j] *values[m,k]returnout#——————————————————————————#Gradient estimation in 2D#——————————————————————————

classGradientEstimationWarning(Warning):pass@cython.cdivision(True)

cdef int _estimate_gradients_2d_global(qhull.DelaunayInfo_t*d, double *data,

int maxiter, double tol,

double*y) nogil:”””Estimate gradients of a function at the vertices of a 2d triangulation.

Parameters

———-

info : input

Triangulation in 2D

data : input

Function values at the vertices

maxiter : input

Maximum number of Gauss-Seidel iterations

tol : input

Absolute / relative stop tolerance

y : output, shape (npoints, 2)

Derivatives [F_x, F_y] at the vertices

Returns

——-

num_iterations

Number of iterations if converged, 0 if maxiter reached

without convergence

Notes

—–

This routine uses a re-implementation of the global approximate

curvature minimization algorithm described in [Nielson83] and [Renka84].

References

———-

.. [Nielson83] G. Nielson,

”A method for interpolating scattered data based upon a minimum norm

network”.

Math. Comp., 40, 253 (1983).

.. [Renka84] R. J. Renka and A. K. Cline.

”A Triangle-based C1 interpolation method.”,

Rocky Mountain J. Math., 14, 223 (1984).”””cdef double Q[2*2]

cdef double s[2]

cdef double r[2]

cdef int ipoint, iiter, k, ipoint2, jpoint2

cdef double f1, f2, df2, ex, ey, L, L3, det, err, change#initialize

for ipoint in range(2*d.npoints):

y[ipoint]=0# #Main point:

# #Z = sum_T sum_{E in T} int_E |W”|^2 = min!

# #where W” is the second derivative of the Clough-Tocher

#interpolant to the direction of the edge E in triangle T.

# #The minimization is done iteratively: for each vertex V,

#the sum

# #Z_V = sum_{E connected to V} int_E |W”|^2

# #is minimized separately, using existing values at other V.

# #Since the interpolant can be written as

# #W(x) = f(x) + w(x)^T y

# #where y = [ F_x(V); F_y(V) ], it is clear that the solution to

#the local problem is is given as a solution of the 2×2 matrix

#equation.

# #Here, we use the Clough-Tocher interpolant, which restricted to

#a single edge is

# #w(x) = (1 – x)**3 * f1

#+ x*(1 – x)**2 * (df1 + 3*f1)

#+ x**2*(1 – x) * (df2 + 3*f2)

#+ x**3 * f2

# #where f1, f2 are values at the vertices, and df1 and df2 are

#derivatives along the edge (away from the vertices).

# #As a consequence, one finds

# #L^3 int_{E} |W”|^2 = y^T A y + 2 B y + C

# #with

# #A = [4, -2; -2, 4]

#B = [6*(f1 – f2), 6*(f2 – f1)]

#y = [df1, df2]

#L = length of edge E

# #and C is not needed for minimization. Since df1 = dF1.E, df2 = -dF2.E,

#with dF1 = [F_x(V_1), F_y(V_1)], and the edge vector E = V2 – V1,

#we have

# #Z_V = dF1^T Q dF1 + 2 s.dF1 + const.

# #which is minimized by

# #dF1 = -Q^{-1} s

# #where

# #Q = sum_E [A_11 E E^T]/L_E^3 = 4 sum_E [E E^T]/L_E^3

#s = sum_E [ B_1 + A_21 df2] E /L_E^3

#= sum_E [ 6*(f1 – f2) + 2*(E.dF2)] E / L_E^3

#

#Gauss-Seidel

for iiter inrange(maxiter):

err=0for ipoint inrange(d.npoints):for k in range(2*2):

Q[k]=0for k in range(2):

s[k]=0#walk over neighbours of given point

for jpoint2 inrange(d.vertex_neighbors_indptr[ipoint],

d.vertex_neighbors_indptr[ipoint+1]):

ipoint2=d.vertex_neighbors_indices[jpoint2]#edge

ex = d.points[2*ipoint2 + 0] – d.points[2*ipoint +0]

ey= d.points[2*ipoint2 + 1] – d.points[2*ipoint + 1]

L= sqrt(ex**2 + ey**2)

L3= L*L*L#data at vertices

f1 =data[ipoint]

f2=data[ipoint2]#scaled gradient projections on the edge

df2 = -ex*y[2*ipoint2 + 0] – ey*y[2*ipoint2 + 1]#edge sum

Q[0] += 4*ex*ex /L3

Q[1] += 4*ex*ey /L3

Q[3] += 4*ey*ey /L3

s[0]+= (6*(f1 – f2) – 2*df2) * ex /L3

s[1] += (6*(f1 – f2) – 2*df2) * ey /L3

Q[2] = Q[1]#solve

det= Q[0]*Q[3] – Q[1]*Q[2]

r[0]= ( Q[3]*s[0] – Q[1]*s[1])/det

r[1] = (-Q[2]*s[0] + Q[0]*s[1])/det

change= max(fabs(y[2*ipoint + 0] +r[0]),

fabs(y[2*ipoint + 1] + r[1]))

y[2*ipoint + 0] = -r[0]

y[2*ipoint + 1] = -r[1]#relative/absolute error

change /= max(1.0, max(fabs(r[0]), fabs(r[1])))

err=max(err, change)if err

#Didn’t converge before maxiter

return0

@cython.boundscheck(False)

@cython.wraparound(False)

cpdef estimate_gradients_2d_global(tri, y, int maxiter=400, double tol=1e-6):

cdef const double[:,::1] data

cdef double[:,:,::1] grad

cdef qhull.DelaunayInfo_t info

cdef int k, ret, nvalues

y=np.asanyarray(y)if y.shape[0] !=tri.npoints:raise ValueError(“‘y’ has a wrong number of items”)ifnp.issubdtype(y.dtype, np.complexfloating):

rg= estimate_gradients_2d_global(tri, y.real, maxiter=maxiter, tol=tol)

ig= estimate_gradients_2d_global(tri, y.imag, maxiter=maxiter, tol=tol)

r= np.zeros(rg.shape, dtype=complex)

r.real=rg

r.imag=igreturnr

y_shape=y.shapeif y.ndim == 1:

y=y[:,None]

y= y.reshape(tri.npoints, -1).T

y= np.ascontiguousarray(y, dtype=np.double)

yi= np.empty((y.shape[0], y.shape[1], 2))

data=y

grad=yi

qhull._get_delaunay_info(&info, tri, 0, 0, 1)

nvalues=data.shape[0]for k inrange(nvalues):

with nogil:

ret=_estimate_gradients_2d_global(&info,&data[k,0],

maxiter,

tol,&grad[k,0,0])if ret ==0:

warnings.warn(“Gradient estimation did not converge,”

“the results may be inaccurate”,

GradientEstimationWarning)return yi.transpose(1, 0, 2).reshape(y_shape + (2,))#——————————————————————————#Cubic interpolation in 2D#——————————————————————————

@cython.cdivision(True)

cdef double_or_complex _clough_tocher_2d_single(qhull.DelaunayInfo_t*d,

int isimplex,

double*b,

double_or_complex*f,

double_or_complex*df) nogil:”””Evaluate Clough-Tocher interpolant on a 2D triangle.

Parameters

———-

d :

Delaunay info

isimplex : int

Triangle to evaluate on

b : shape (3,)

Barycentric coordinates of the point on the triangle

f : shape (3,)

Function values at vertices

df : shape (3, 2)

Gradient values at vertices

Returns

——-

w :

Value of the interpolant at the given point

References

———-

.. [CT] See, for example,

P. Alfeld,

”A trivariate Clough-Tocher scheme for tetrahedral data”.

Computer Aided Geometric Design, 1, 169 (1984);

G. Farin,

”Triangular Bernstein-Bezier patches”.

Computer Aided Geometric Design, 3, 83 (1986).”””cdef double_or_complex \

c3000, c0300, c0030, c0003, \

c2100, c2010, c2001, c0210, c0201, c0021, \

c1200, c1020, c1002, c0120, c0102, c0012, \

c1101, c1011, c0111

cdef double_or_complex \

f1, f2, f3, df12, df13, df21, df23, df31, df32

cdef double g[3]

cdef double \

e12x, e12y, e23x, e23y, e31x, e31y, \

e14x, e14y, e24x, e24y, e34x, e34y

cdef double_or_complex w

cdef double minval

cdef double b1, b2, b3, b4

cdef int k, itri

cdef double c[3]

cdef double y[2]#XXX: optimize + refactor this!

e12x= (+ d.points[0 + 2*d.simplices[3*isimplex + 1]]- d.points[0 + 2*d.simplices[3*isimplex +0]])

e12y= (+ d.points[1 + 2*d.simplices[3*isimplex + 1]]- d.points[1 + 2*d.simplices[3*isimplex +0]])

e23x= (+ d.points[0 + 2*d.simplices[3*isimplex + 2]]- d.points[0 + 2*d.simplices[3*isimplex + 1]])

e23y= (+ d.points[1 + 2*d.simplices[3*isimplex + 2]]- d.points[1 + 2*d.simplices[3*isimplex + 1]])

e31x= (+ d.points[0 + 2*d.simplices[3*isimplex +0]]- d.points[0 + 2*d.simplices[3*isimplex + 2]])

e31y= (+ d.points[1 + 2*d.simplices[3*isimplex +0]]- d.points[1 + 2*d.simplices[3*isimplex + 2]])

e14x= (e12x – e31x)/3e14y= (e12y – e31y)/3e24x= (-e12x + e23x)/3e24y= (-e12y + e23y)/3e34x= (e31x – e23x)/3e34y= (e31y – e23y)/3f1=f[0]

f2= f[1]

f3= f[2]

df12= +(df[2*0+0]*e12x + df[2*0+1]*e12y)

df21= -(df[2*1+0]*e12x + df[2*1+1]*e12y)

df23= +(df[2*1+0]*e23x + df[2*1+1]*e23y)

df32= -(df[2*2+0]*e23x + df[2*2+1]*e23y)

df31= +(df[2*2+0]*e31x + df[2*2+1]*e31y)

df13= -(df[2*0+0]*e31x + df[2*0+1]*e31y)

c3000=f1

c2100= (df12 + 3*c3000)/3c2010= (df13 + 3*c3000)/3c0300=f2

c1200= (df21 + 3*c0300)/3c0210= (df23 + 3*c0300)/3c0030=f3

c1020= (df31 + 3*c0030)/3c0120= (df32 + 3*c0030)/3c2001= (c2100 + c2010 + c3000)/3c0201= (c1200 + c0300 + c0210)/3c0021= (c1020 + c0120 + c0030)/3

# #Now, we need to impose the condition that the gradient of the spline

#to some direction `w` is a linear function along the edge.

# #As long as two neighbouring triangles agree on the choice of the

#direction `w`, this ensures global C1 differentiability.

#Otherwise, the choice of the direction is arbitrary (except that

#it should not point along the edge, of course).

# #In [CT]_, it is suggested to pick `w` as the normal of the edge.

#This choice is given by the formulas

# #w_12 = E_24 + g[0] * E_23

#w_23 = E_34 + g[1] * E_31

#w_31 = E_14 + g[2] * E_12

# #g[0] = -(e24x*e23x + e24y*e23y) / (e23x**2 + e23y**2)

#g[1] = -(e34x*e31x + e34y*e31y) / (e31x**2 + e31y**2)

#g[2] = -(e14x*e12x + e14y*e12y) / (e12x**2 + e12y**2)

# #However, this choice gives an interpolant that is *not*

#invariant under affine transforms. This has some bad

#consequences: for a very narrow triangle, the spline can

#develops huge oscillations. For instance, with the input data

# #[(0, 0), (0, 1), (eps, eps)], eps = 0.01

#F = [0, 0, 1]

#dF = [(0,0), (0,0), (0,0)]

# #one observes that as eps -> 0, the absolute maximum value of the

#interpolant approaches infinity.

# #So below, we aim to pick affine invariant `g[k]`.

#We choose

# #w = V_4′ – V_4

# #where V_4 is the centroid of the current triangle, and V_4′ the

#centroid of the neighbour. Since this quantity transforms similarly

#as the gradient under affine transforms, the resulting interpolant

#is affine-invariant. Moreover, two neighbouring triangles clearly

#always agree on the choice of `w` (sign is unimportant), and so

#this choice also makes the interpolant C1.

# #The drawback here is a performance penalty, since we need to

#peek into neighbouring triangles.

#

for k in range(3):

itri= d.neighbors[3*isimplex +k]if itri == -1:#No neighbour.

#Compute derivative to the centroid direction (e_12 + e_13)/2.

g[k] = -1./2

continue

#Centroid of the neighbour, in our local barycentric coordinates

y[0]= (+ d.points[0 + 2*d.simplices[3*itri +0]]+ d.points[0 + 2*d.simplices[3*itri + 1]]+ d.points[0 + 2*d.simplices[3*itri + 2]]) / 3y[1] = (+ d.points[1 + 2*d.simplices[3*itri +0]]+ d.points[1 + 2*d.simplices[3*itri + 1]]+ d.points[1 + 2*d.simplices[3*itri + 2]]) / 3qhull._barycentric_coordinates(2, d.transform + isimplex*2*3, y, c)#Rewrite V_4′-V_4 = const*[(V_4-V_2) + g_i*(V_3 – V_2)]

#Now, observe that the results can be written *in terms of

#barycentric coordinates*. Barycentric coordinates stay

#invariant under affine transformations, so we can directly

#conclude that the choice below is affine-invariant.

if k ==0:

g[k]= (2*c[2] + c[1] – 1) / (2 – 3*c[2] – 3*c[1])elif k == 1:

g[k]= (2*c[0] + c[2] – 1) / (2 – 3*c[0] – 3*c[2])elif k == 2:

g[k]= (2*c[1] + c[0] – 1) / (2 – 3*c[1] – 3*c[0])

c0111= (g[0]*(-c0300 + 3*c0210 – 3*c0120 +c0030)+ (-c0300 + 2*c0210 – c0120 + c0021 + c0201))/2c1011= (g[1]*(-c0030 + 3*c1020 – 3*c2010 +c3000)+ (-c0030 + 2*c1020 – c2010 + c2001 + c0021))/2c1101= (g[2]*(-c3000 + 3*c2100 – 3*c1200 +c0300)+ (-c3000 + 2*c2100 – c1200 + c2001 + c0201))/2c1002= (c1101 + c1011 + c2001)/3c0102= (c1101 + c0111 + c0201)/3c0012= (c1011 + c0111 + c0021)/3c0003= (c1002 + c0102 + c0012)/3

#extended barycentric coordinates

minval =b[0]for k in range(3):if b[k]

minval=b[k]

b1= b[0] -minval

b2= b[1] -minval

b3= b[2] -minval

b4= 3*minval#evaluate the polynomial — the stupid and ugly way to do it,

#one of the 4 coordinates is in fact zero

w = (b1**3*c3000 + 3*b1**2*b2*c2100 + 3*b1**2*b3*c2010 +

3*b1**2*b4*c2001 + 3*b1*b2**2*c1200 +

6*b1*b2*b4*c1101 + 3*b1*b3**2*c1020 + 6*b1*b3*b4*c1011 +

3*b1*b4**2*c1002 + b2**3*c0300 + 3*b2**2*b3*c0210 +

3*b2**2*b4*c0201 + 3*b2*b3**2*c0120 + 6*b2*b3*b4*c0111 +

3*b2*b4**2*c0102 + b3**3*c0030 + 3*b3**2*b4*c0021 +

3*b3*b4**2*c0012 + b4**3*c0003)returnwclassCloughTocher2DInterpolator(NDInterpolatorBase):”””CloughTocher2DInterpolator(points, values, tol=1e-6)

Piecewise cubic, C1 smooth, curvature-minimizing interpolant in 2D.

.. versionadded:: 0.9

Methods

——-

__call__

Parameters

———-

points : ndarray of floats, shape (npoints, ndims); or Delaunay

Data point coordinates, or a precomputed Delaunay triangulation.

values : ndarray of float or complex, shape (npoints, …)

Data values.

fill_value : float, optional

Value used to fill in for requested points outside of the

convex hull of the input points. If not provided, then

the default is “nan“.

tol : float, optional

Absolute/relative tolerance for gradient estimation.

maxiter : int, optional

Maximum number of iterations in gradient estimation.

rescale : bool, optional

Rescale points to unit cube before performing interpolation.

This is useful if some of the input dimensions have

incommensurable units and differ by many orders of magnitude.

Notes

—–

The interpolant is constructed by triangulating the input data

with Qhull [1]_, and constructing a piecewise cubic

interpolating Bezier polynomial on each triangle, using a

Clough-Tocher scheme [CT]_. The interpolant is guaranteed to be

continuously differentiable.

The gradients of the interpolant are chosen so that the curvature

of the interpolating surface is approximatively minimized. The

gradients necessary for this are estimated using the global

algorithm described in [Nielson83]_ and [Renka84]_.

Examples

——–

We can interpolate values on a 2D plane:

>>> from scipy.interpolate import CloughTocher2DInterpolator

>>> import matplotlib.pyplot as plt

>>> np.random.seed(0)

>>> x = np.random.random(10) – 0.5

>>> y = np.random.random(10) – 0.5

>>> z = np.hypot(x, y)

>>> X = np.linspace(min(x), max(x))

>>> Y = np.linspace(min(y), max(y))

>>> X, Y = np.meshgrid(X, Y) # 2D grid for interpolation

>>> interp = CloughTocher2DInterpolator(list(zip(x, y)), z)

>>> Z = interp(X, Y)

>>> plt.pcolormesh(X, Y, Z, shading=’auto’)

>>> plt.plot(x, y, “ok”, label=”input point”)

>>> plt.legend()

>>> plt.colorbar()

>>> plt.axis(“equal”)

>>> plt.show()

See also

——–

griddata :

Interpolate unstructured D-D data.

LinearNDInterpolator :

Piecewise linear interpolant in N dimensions.

NearestNDInterpolator :

Nearest-neighbor interpolation in N dimensions.

References

———-

.. [1] http://www.qhull.org/

.. [CT] See, for example,

P. Alfeld,

”A trivariate Clough-Tocher scheme for tetrahedral data”.

Computer Aided Geometric Design, 1, 169 (1984);

G. Farin,

”Triangular Bernstein-Bezier patches”.

Computer Aided Geometric Design, 3, 83 (1986).

.. [Nielson83] G. Nielson,

”A method for interpolating scattered data based upon a minimum norm

network”.

Math. Comp., 40, 253 (1983).

.. [Renka84] R. J. Renka and A. K. Cline.

”A Triangle-based C1 interpolation method.”,

Rocky Mountain J. Math., 14, 223 (1984).”””

def __init__(self, points, values, fill_value=np.nan,

tol=1e-6, maxiter=400, rescale=False):

NDInterpolatorBase.__init__(self, points, values, ndim=2,

fill_value=fill_value, rescale=rescale)if self.tri isNone:

self.tri=qhull.Delaunay(self.points)

self.grad=estimate_gradients_2d_global(self.tri, self.values,

tol=tol, maxiter=maxiter)def_evaluate_double(self, xi):return self._do_evaluate(xi, 1.0)def_evaluate_complex(self, xi):return self._do_evaluate(xi, 1.0j)

@cython.boundscheck(False)

@cython.wraparound(False)def _do_evaluate(self, const double[:,::1] xi, double_or_complex dummy):

cdef const double_or_complex[:,::1] values =self.values

cdef const double_or_complex[:,:,:] grad=self.grad

cdef double_or_complex[:,::1] out

cdef const double[:,::1] points =self.points

cdef const int[:,::1] simplices =self.tri.simplices

cdef double c[NPY_MAXDIMS]

cdef double_or_complex f[NPY_MAXDIMS+1]

cdef double_or_complex df[2*NPY_MAXDIMS+2]

cdef double_or_complex w

cdef double_or_complex fill_value

cdef int i, j, k, m, ndim, isimplex, inside, start, nvalues

cdef qhull.DelaunayInfo_t info

cdef double eps, eps_broad

ndim= xi.shape[1]

start=0

fill_value=self.fill_value

qhull._get_delaunay_info(&info, self.tri, 1, 1, 0)

out= np.zeros((xi.shape[0], self.values.shape[1]),

dtype=self.values.dtype)

nvalues= out.shape[1]

eps= 100 *DBL_EPSILON

eps_broad=sqrt(eps)

with nogil:for i inrange(xi.shape[0]):#1) Find the simplex

isimplex= qhull._find_simplex(&info, c,&xi[i,0],&start, eps, eps_broad)#2) Clough-Tocher interpolation

if isimplex == -1:#outside triangulation

for k inrange(nvalues):

out[i,k]=fill_valuecontinue

for k inrange(nvalues):for j in range(ndim+1):

f[j]=values[simplices[isimplex,j],k]

df[2*j] =grad[simplices[isimplex,j],k,0]

df[2*j+1] = grad[simplices[isimplex,j],k,1]

w= _clough_tocher_2d_single(&info, isimplex, c, f, df)

out[i,k]=wreturn out

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/141471.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • php实现第三方登录

    php实现第三方登录

    2021年10月25日
  • Eureka集群原理

    Eureka集群原理问题:微服务RPC远程服务调用最核心的是什么?高可用,试想你的注册中心只有一个onlyone,它出故障了那就呵呵o( ̄︶ ̄)o了,会导致整个微服务环境不可用。解决办法:搭建Eureka注册中心集群,实现负载均衡+故障容错Eureka集群的原理:互相注册,相互守望。一个Eureka集群包含7001和7002等许多服务,在这个集群中,7001指向其他所有服务…

  • Quartz定时任务[通俗易懂]

    一、Quartz的核心概念1.任务jobjob就是想要实现的任务类,每一个job必须实现job接口,且实现接口中的excute()方法。2.触发器TriggerTrigger为你执行任务的触发器,可以设置特定时间执行该任务Trigger主要包含SimpleTrigger和CronTrigger两种3.调度器SchedulerScheduler为任务的调度器,它会将任务job及触发器…

  • a标签下划线

    a标签下划线页面中有一处box中的a标签都被加上了下划线,查找元素却没有找到css中的underline。原因是<a>标签默认是有下划线的,而一般看到的<a>标签链接中的下划线都被覆盖掉了,所以误以为<a>标签的默认状态是没有下划线的,出现下划线是有css另外渲染的。其实下划线才是<a>标签的默认状态在head中加上下面一段覆盖掉<…

  • python 激活码 2021(注册激活)

    (python 激活码 2021)JetBrains旗下有多款编译器工具(如:IntelliJ、WebStorm、PyCharm等)在各编程领域几乎都占据了垄断地位。建立在开源IntelliJ平台之上,过去15年以来,JetBrains一直在不断发展和完善这个平台。这个平台可以针对您的开发工作流进行微调并且能够提供…

  • [夜记] — 通州

    [夜记] — 通州

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号