利用griddata进行插值

利用griddata进行插值因为最近在做算法优化,所以对数据统一性有一定要求,在最近的研究中主要用一个简单的最近邻插值对数据集进行降尺度处理。主要运用到的函数时scipy里面的griddata第一步:导入相关库importxarrayasxrfromscipy.interpolateimportgriddata#插值函数importnumpyasnp第二步:给出插值到的经纬度信息(目标经纬度)mask_tmp=xr.open_dataset(‘G:/China/temperatu

大家好,又见面了,我是你们的朋友全栈君。

因为最近在做算法优化,所以对数据统一性有一定要求,在最近的研究中主要用一个简单的最近邻插值对数据集进行降尺度处理。

主要运用到的函数时scipy里面的
griddata

griddata函数讲解

`scipy.interpolate.griddata(points, values, xi, method='linear', fill_value=nan, rescale=False)`
  • points:2-D ndarray of floats with shape (n, D), 或 length D tuple of 1-D ndarrays with shape (n,).
  • values:ndarray of float 或 complex, shape (n,)
  • xi:2-D ndarray of floats with shape (m, D), 或 length D tuple of ndarrays broadcastable to the same shape.
  • method:{‘linear’, ‘nearest’, ‘cubic’}, 可选参数

nearest:返回最接近插值点的数据点的值
linear:线性插值
cubic:三次样条插值

第一步:导入相关库

import xarray as xr    
from scipy.interpolate import griddata    # 插值函数
import numpy as np

第二步:给出插值到的经纬度信息(目标经纬度)

mask_tmp = xr.open_dataset('G:/China/temperature_max/nc/2000/tmx_2000_1.nc')
# 待插值的标准经纬度
mask_tmp_lon = mask_tmp.lon.values  # (7680,) 一维
mask_tmp_lat = mask_tmp.lat.values  # (4717,) 一维
mask_LON,mask_LAT = np.meshgrid(mask_tmp_lon,mask_tmp_lat)  # (4717, 7680) 生成经纬度网格

第三步:待插值数据

rad = xr.open_dataset('D:/Users/62692/Desktop/rad.nc')
# 辐射数据经纬度
rad_lon = rad.lon.values    # 辐射数据经度 (641,)
rad_lat = rad.lat.values    # 辐射数据纬度 (394,)
rad_LON, rad_LAT = np.meshgrid(rad_lon,rad_lat)   # (394, 641)
rad_LON = rad_LON.ravel().reshape(-1,1)  # 展平 (252554, 1)
rad_LAT = rad_LAT.ravel().reshape(-1,1)  # 展平 (252554, 1)
rad_values = rad['rad'].values     # 需要插值的辐射数据 (394, 641)
points = np.concatenate([rad_LON,rad_LAT],axis = 1)   # (252554, 2)

第四步:插值

# 插值
data = griddata(points, rad_values.ravel(),(mask_LON,mask_LAT),method='nearest')  # 用最近邻插值即可
# rad_values.ravel() (252554,)
# 这里用最邻近主要考虑到辐射数据的连续性变化,对于线性插值或者三次插值并没有多大影响

汇总成函数

''' Created on 1 23, 2022 @author: GongHaixing 将一个文件夹里面所有的nc文件进行插值 '''
def interp2D(maskpath,mask_lon='lon',mask_lat='lat',inputpath='', outputpath='',data_lon='lon',data_lat='lat',variable='',interp_method='nearest',save=True):
    """输入插值目标的相关信息以及需要插值的数据 :maskpath: 需要插值到对应数据的数据路径 :mask_lon: 标准数据的经度名称,比如:x,lon :mask_lat: 标准数据的纬度名称,比如:y,lat :inputpath: 需要做插值处理的nc文件所在的目录 :outputpath: 插值完nc文件保存的路径,注意要是'/' :data_lon: 需要做插值数据经度名称,比如:'x','lon' :data_lat: 需要做插值数据经度名称,比如:'y','lat' :variable:需要做插值数据变量的名称,比如:'tmp','ndvi' :interp_method: griddata的插值方法,比如:'nearest','linear','cubic' :save:是否对文件进行存储 """
    #导入相关库
    import xarray as xr
    import os
    from scipy.interpolate import griddata    # 插值函数
    import numpy as np

    ### 目标插值
    mask_data = xr.open_dataset(maskpath)
    mask_data_lon = mask_data[mask_lon].values
    mask_data_lat = mask_data[mask_lat].values
    mask_LON,mask_LAT = np.meshgrid(mask_data_lon,mask_data_lat)
    mask_LON1 = np.array(mask_LON)
    mask_LAT1 = np.array(mask_LAT)

    ### 插值对象
    os.chdir(inputpath)                            # 给出nc文件所在的目录(路径)
    files = os.listdir()
    savepath = outputpath
    for file in files:
        inputfile = xr.open_dataset(file)
        inputfile_lon = inputfile[data_lon].values                                 # 数据的经纬度
        inputfile_lat = inputfile[data_lat].values
        inputfile_LON, inputfile_LAT = np.meshgrid(inputfile_lon,inputfile_lat)
        inputfile_LON = inputfile_LON.ravel().reshape(-1,1)
        inputfile_LAT = inputfile_LAT.ravel().reshape(-1,1)
        inputfile_values = np.array(inputfile[variable].values,dtype=np.float32)     # 需要插值的数据
        points = np.concatenate([inputfile_LON,inputfile_LAT],axis = 1)
        # 插值
        print('开始对'+file+'进行插值')
        inputfile_interp = griddata(points, inputfile_values.ravel(),(mask_LON1,mask_LAT1),method=interp_method).astype(np.float32)  # 用最近邻插值即可,不然数据会nan
        outfile= xr.Dataset(
                      data_vars = { 
   variable:(('lat','lon'),inputfile_interp)},
                      coords = { 
   
                                'lon':('lon',np.array(mask_data_lon)),
                                'lat':('lat',np.array(mask_data_lat))}
                                )
        if save == True:
            outfile.to_netcdf(outputpath+'/'+file)
            print(file+'已经插值成功,且已经保存到'+outputpath+'路径下')
        else:
            print(file+'已经插值成功,但是我没有保存文件')
from interp2D import *
import xarray as xr
import os
import pandas as pd
from scipy.interpolate import griddata    # 插值函数


maskpath = 'H:/China/temperature_max/nc/2000/tmx_2000_1.nc'
mask_lon='lon'
mask_lat='lat'
inputpath='H:/China/LAI/nc'
outputpath='H:/China/LAI/nc_1km'
data_lon='lon'
data_lat='lat'
variable='LAI'
interp_method='nearest'
save=True

interp2D(maskpath=maskpath,mask_lon='lon',mask_lat='lat',inputpath=inputpath, outputpath=outputpath,data_lon='lon',data_lat='lat',variable=variable,interp_method='nearest',save=True)

结果对比

插值前(10km)

在这里插入图片描述

插值后(1km)

在这里插入图片描述

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/141272.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • Flow Control(流控)

    Flow Control(流控)Backpressure(背压)只是解决FlowControl的其中一个方案。就像小学做的那道数学题:一个水池,有一个进水管和一个出水管。如果进水管水流更大,过一段时间水池就会满(溢出)。这就是没有FlowControl导致的结果。而解决FlowControl有几种思路呢?(1)Backpressure,就是消费者需要多少,生产者就生产多少。这有点类似于TCP里的流量控制,接收方根据自己的…

  • 物联网是随着智能化技术的发展_嵌入式物联网开发

    物联网是随着智能化技术的发展_嵌入式物联网开发






从谷歌的AlphaGo将人工智能推进大众视野起,在可预见的未来,人工智能会涉及到我们生活的各个方面,…

  • C++11新特性之字节对齐、多参数模版、placement new

    1.内存对齐上面的代码演示了采用#pragmapack()方法实现内存对其。接下来介绍C++11中相关内存对其的方法。1.1alignasalignas指定内存对其大小,有时候我们希望不按

    2021年12月28日
  • shell:修改变更值[通俗易懂]

    shell:修改变更值[通俗易懂]#catconfd-general-config.confETCD_SERVER_HOSTIP=192.168.3.103ETCD_SERVER_PORT=2379innernetworksegement=192.168.3pgconn=10.47.245.110:13306,10.47.245.110:23306kafkaconn=10.47.223.223:9090,10…

  • CSU-1120 病毒(最长递增公共子序列)[通俗易懂]

    CSU-1120 病毒(最长递增公共子序列)

  • 【二分查找】详细图解[通俗易懂]

    【二分查找】详细图解[通俗易懂]二分查找文章目录二分查找1.简介2.例子3.第一种写法(左闭右闭)3.1正向写法(正确演示)3.2反向写法(错误演示)4.第二种写法(左闭右开)4.1正向写法(正确演示)4.2反向写法(错误演示)5.总结写在前面:(一)二分法的思想十分容易理解,但是二分法边界处理问题大多数人都是记忆模板,忘记模板后处理边界就一团乱(????:“我懂了”,✋:”你懂个????”​)因为我此前也是记忆模板,所以现在想通过一边学习,一边将所学记录成博客教出去(费曼学习法),希望以后能自己推导出边界如

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号