机器学习之支持向量回归(SVR)

机器学习之支持向量回归(SVR)简介支持向量机(SupportVectorMachine)是由Vapnik等人于1995年提出来的,之后随着统计理论的发展,支持向量机SVM也逐渐受到了各领域研究者的关注,在很短的时间就得到了很广泛的应用。支持向量机是被公认的比较优秀的分类模型。同时,在支持向量机的发展过程中,其理论方面的研究得到了同步的发展,为支持向量机的研究提供了强有力的理论支撑。本实训项目主要围绕支持向量机的原理和技术进行介绍,并基于实际案例进行实战实训。线性支持向量机#encoding=utf8fromsk

大家好,又见面了,我是你们的朋友全栈君。

简介
支持向量机 (Support Vector Machine) 是由Vapnik等人于1995年提出来的,之后随着统计理论的发展,支持向量机 SVM 也逐渐受到了各领域研究者的关注,在很短的时间就得到了很广泛的应用。
支持向量机是被公认的比较优秀的分类模型。同时,在支持向量机的发展过程中,其理论方面的研究得到了同步的发展,为支持向量机的研究提供了强有力的理论支撑。
本实训项目主要围绕支持向量机的原理和技术进行介绍,并基于实际案例进行实战实训。

线性支持向量机

#encoding=utf8
from sklearn.svm import LinearSVC

def linearsvc_predict(train_data,train_label,test_data):
    ''' input:train_data(ndarray):训练数据 train_label(ndarray):训练标签 output:predict(ndarray):测试集预测标签 '''
    #********* Begin *********# 
    clf = LinearSVC(dual=False)
    clf.fit(train_data,train_label)
    predict = clf.predict(test_data)
    #********* End *********# 
    return predict

非线性支持向量机

#encoding=utf8
from sklearn.svm import SVC

def svc_predict(train_data,train_label,test_data,kernel):
    ''' input:train_data(ndarray):训练数据 train_label(ndarray):训练标签 kernel(str):使用核函数类型: 'linear':线性核函数 'poly':多项式核函数 'rbf':径像核函数/高斯核 output:predict(ndarray):测试集预测标签 '''
    #********* Begin *********# 
    clf =SVC(kernel=kernel)
    clf.fit(train_data,train_label)
    predict = clf.predict(test_data)
    #********* End *********# 
    return predict


序列最小优化算法

#encoding=utf8
import numpy as np
class smo:
    def __init__(self, max_iter=100, kernel='linear'):
        ''' input:max_iter(int):最大训练轮数 kernel(str):核函数,等于'linear'表示线性,等于'poly'表示多项式 '''
        self.max_iter = max_iter
        self._kernel = kernel
    #初始化模型
    def init_args(self, features, labels):
        self.m, self.n = features.shape
        self.X = features
        self.Y = labels
        self.b = 0.0
        # 将Ei保存在一个列表里
        self.alpha = np.ones(self.m)
        self.E = [self._E(i) for i in range(self.m)]
        # 错误惩罚参数
        self.C = 1.0
    #********* Begin *********# 
    #kkt条件 
    def _KKT(self, i):
        y_g = self._g(i)*self.Y[i]
        if self.alpha[i] == 0:
            return y_g >= 1
        elif 0 < self.alpha[i] < self.C:
            return y_g == 1
        else:
            return y_g <= 1
    # g(x)预测值,输入xi(X[i])
    def _g(self, i):
        r = self.b
        for j in range(self.m):
            r += self.alpha[j]*self.Y[j]*self.kernel(self.X[i], self.X[j])
        return r
    # 核函数,多项式添加二次项即可
    def kernel(self, x1, x2):
        if self._kernel == 'linear':
            return sum([x1[k]*x2[k] for k in range(self.n)])
        elif self._kernel == 'poly':
            return (sum([x1[k]*x2[k] for k in range(self.n)]) + 1)**2    
        return 0
    # E(x)为g(x)对输入x的预测值和y的差
    def _E(self, i):
        return self._g(i) - self.Y[i]
    #初始alpha
    def _init_alpha(self):
        # 外层循环首先遍历所有满足0<a<C的样本点,检验是否满足KKT
        index_list = [i for i in range(self.m) if 0 < self.alpha[i] < self.C]
        # 否则遍历整个训练集
        non_satisfy_list = [i for i in range(self.m) if i not in index_list]
        index_list.extend(non_satisfy_list)
        for i in index_list:
            if self._KKT(i):
                continue
            E1 = self.E[i]
            # 如果E2是+,选择最小的;如果E2是负的,选择最大的
            if E1 >= 0:
                j = min(range(self.m), key=lambda x: self.E[x])
            else:
                j = max(range(self.m), key=lambda x: self.E[x])
            return i, j
    #选择alpha参数 
    def _compare(self, _alpha, L, H):
        if _alpha > H:
            return H
        elif _alpha < L:
            return L
        else:
            return _alpha
    #训练
    def fit(self, features, labels):
        ''' input:features(ndarray):特征 label(ndarray):标签 '''
        self.init_args(features, labels)
        for t in range(self.max_iter):
            i1, i2 = self._init_alpha()
            # 边界
            if self.Y[i1] == self.Y[i2]:
                L = max(0, self.alpha[i1]+self.alpha[i2]-self.C)
                H = min(self.C, self.alpha[i1]+self.alpha[i2])
            else:
                L = max(0, self.alpha[i2]-self.alpha[i1])
                H = min(self.C, self.C+self.alpha[i2]-self.alpha[i1])
            E1 = self.E[i1]
            E2 = self.E[i2]
            # eta=K11+K22-2K12
            eta = self.kernel(self.X[i1], self.X[i1]) + self.kernel(self.X[i2], self.X[i2]) - 2*self.kernel(self.X[i1], self.X[i2])
            if eta <= 0:
                continue
            alpha2_new_unc = self.alpha[i2] + self.Y[i2] * (E2 - E1) / eta
            alpha2_new = self._compare(alpha2_new_unc, L, H)
            alpha1_new = self.alpha[i1] + self.Y[i1] * self.Y[i2] * (self.alpha[i2] - alpha2_new)
            b1_new = -E1 - self.Y[i1] * self.kernel(self.X[i1], self.X[i1]) * (alpha1_new-self.alpha[i1]) - self.Y[i2] * self.kernel(self.X[i2], self.X[i1]) * (alpha2_new-self.alpha[i2])+ self.b 
            b2_new = -E2 - self.Y[i1] * self.kernel(self.X[i1], self.X[i2]) * (alpha1_new-self.alpha[i1]) - self.Y[i2] * self.kernel(self.X[i2], self.X[i2]) * (alpha2_new-self.alpha[i2])+ self.b 
            if 0 < alpha1_new < self.C:
                b_new = b1_new
            elif 0 < alpha2_new < self.C:
                b_new = b2_new
            else:
                # 选择中点
                b_new = (b1_new + b2_new) / 2
            # 更新参数
            self.alpha[i1] = alpha1_new
            self.alpha[i2] = alpha2_new
            self.b = b_new
            self.E[i1] = self._E(i1)
            self.E[i2] = self._E(i2)       
    def predict(self, data):
        ''' input:data(ndarray):单个样本 output:预测为正样本返回+1,负样本返回-1 '''
        r = self.b
        for i in range(self.m):
            r += self.alpha[i] * self.Y[i] * self.kernel(data, self.X[i])
        return 1 if r > 0 else -1
    #********* End *********# 

支持向量回归

#encoding=utf8
from sklearn.svm import SVR

def svr_predict(train_data,train_label,test_data):
    ''' input:train_data(ndarray):训练数据 train_label(ndarray):训练标签 output:predict(ndarray):测试集预测标签 '''
    #********* Begin *********#
    svr = SVR(kernel='rbf',C=100,gamma= 0.001,epsilon=0.1)
    svr.fit(train_data,train_label)
    predict = svr.predict(test_data)

    #********* End *********#
    return predict

感谢大家的支持!!!!!!!!!!!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/136562.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • mybatis对应jdbc类型_java如何判断两个字符串是否相等

    mybatis对应jdbc类型_java如何判断两个字符串是否相等1.Mybatis支持的JDBC类型为了未来的参考,MyBatis通过包含的jdbcType枚举型,支持下面的JDBC类型。1 2 3 4 5 6 BIT FLOAT CHAR TIMESTAMP OTHER UNDEFINED TINYINT REAL VARCHAR BINARY BLOB …

  • 非线性最小二乘问题例题_非线性自适应控制算法

    非线性最小二乘问题例题_非线性自适应控制算法摘录的一篇有关求解非线性最小二乘问题的算法–LM算法的文章,当中也加入了一些我个人在求解高精度最小二乘问题时候的一些感触:LM算法,全称为Levenberg-Marquard算法,它可用于解决非线性最小二乘问题,多用于曲线拟合等场合。LM算法的实现并不算难,它的关键是用模型函数 f 对待估参数向量p在其邻域内做线性近似,忽略掉二阶以上的导数项,从而转化为线性最小二乘问题,它具有收敛速度快

  • 使用ABP打造SAAS系统(2)——前端框架选择[通俗易懂]

    使用ABP打造SAAS系统(2)——前端框架选择[通俗易懂]一、流行框架比较  作者用过的前端框架不少,曾经还在一个项目中同时使用两套框架控件(年少无知、效率特慢),所以可供选择的前端框架有不少:easyui: 优点:非常成熟的框架,基于iframe可以进行多线程操作 缺点:由于采用iframe,不优化情况下效率是个问题,同时iframe导致对SEO的支持不是很好,自带风格不是很符合现在人的口味,自己定义风格有点浪费时间,顺便提供下本人自…

  • BatchNorm 理解

    BatchNorm 理解BN可以说是NN发展中的一个里程碑式的结构了,不增加inference时间,调参变得简单,收敛更快效果更好。虽然提出的时间已经很久了,而且网上关于BN的解释一堆一堆的,但是博主觉得有不少解释是欠妥的,在此贴出博主贴出对caffe中BN源码的解释和自己对BN的理解,欢迎讨论。caffe中BN的实现比较反人类。BatchNorm层单纯实现标准化,再用一个scale层添加  参数,共同完成BN。…

  • linux mysql数据库备份以及还原[通俗易懂]

    linux mysql数据库备份以及还原[通俗易懂]1备份命令mysqldump-h127.0.0.1-P3306-uroot-p123456databasename>database.sql2数据库还原命令mysql-h127.0.0.1-P3306-uroot-p123456databasename<database.sql

  • keepalived+Nginx实现高可用主从集群

    keepalived+Nginx实现高可用主从集群

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号