按位异或运算符的讲解 (详细)

按位异或运算符的讲解 (详细)按位异或运算按位异或运算是数学或者计算机中运用到的数据处理的方法。感觉是一种思路,当然也是运用到了他的原理。异或运算首先异或表示当两个数的二进制表示,进行异或运算时,当前位的两个二进制表示不同则为1,相同则为0.改方法被广泛用来统计一个数的1的位数。即:0^0=0,0^1=1,1^0=1,1^1=0,按位异或的3个特点:1.)0^0=0,0^1=1,0异或任何数=任何数。2.)1^0=1,1^1=

大家好,又见面了,我是你们的朋友全栈君。

按位异或运算

按位异或运算是数学或者计算机中运用到的数据处理的方法。感觉是一种思路,当然也是运用到了他的原理。

异或运算

首先异或表示当两个数的二进制表示,进行异或运算时,当前位的两个二进制表示不同则为1 ,相同则为0. 改方法被广泛用来统计一个数的1的位数。

即:
0 ^ 0 = 0 ,
0 ^ 1 = 1,
1 ^ 0 = 1 ,
1 ^ 1 = 0 ,
按位异或的3个特点:
1.) 0 ^ 0 = 0 , 0 ^ 1 = 1, 0异或任何数=任何数。
2.)1 ^ 0 = 1 , 1 ^ 1 = 0 , 1异或任何数=任何数取反。
3.)任何数异或自己 = 把自己置0。

按位异或的几个常见用途:
(1) 使某些特定的位翻转
例如对数10100001的第2位和第3位翻转,则可以将该数与00000110进行按位异或运算。
      10100001^00000110 = 10100111

(2) 实现两个值的交换,而不必使用临时变量。
例如交换两个整数a=10100001,b=00000110的值,可通过下列语句实现:
    a = a^b;   //a=10100111
    b = b^a;   //b=10100001
    a = a^b;   //a=00000110

位运算

位运算时把数字用二进制表示之后,对每一位上0或者1的运算。理解位运算的第一步是理解二进制。二进制是指数字的每一位都是0或者1.比如十进制的2转化为二进制之后就是10。

其实二进制的运算并不是很难掌握,因为位运算总共只有5种运算:与、或、异或、左移、右移。如下表:
与(&) 0 & 0 = 0 1 & 0 = 0 0 & 1 = 0 1 & 1 = 1
或(|) 0 | 0 = 0 1 | 0 = 1 0 | 1 = 1 1 | 1 = 1
异或(^) 0 ^ 0 = 0 1 ^ 0 = 1 0 ^ 1 = 1 1 ^ 1 = 0

左移运算:

左移运算符m<<n表示吧m左移n位。左移n位的时候,最左边的n位将被丢弃,同时在最右边补上n个0.比如:

00001010 << 2 = 00101000

10001010 << 3 = 01010000

右移运算:

右移运算符m>>n表示把m右移n位。右移n位的时候,最右边的n位将被丢弃。但右移时处理最左边位的情形要稍微复杂一点。这里要特别注意,如果数字是一个无符号数值,则用0填补最左边的n位。如果数字是一个有符号数值,则用数字的符号位填补最左边的n位。也就是说如果数字原先是一个正数,则右移之后再最左边补n个0;如果数字原先是负数,则右移之后在最左边补n个1.下面是堆两个8位有符号数作右移的例子:

00001010 >> 2 = 00000010

10001010 >> 3 = 11110001

关于移位的运算有这样的等价关系:把整数右移一位和把整数除以2在数学上是等价的。

a << = 1 ; //a左移一位等效于a = a * 2;

a << = 2 ; //a左移2位等效于a = a * 2的2次方(4);
  计算机内部只识别1、0,十进制需变成二进制才能使用移位运算符<<,>> 。
int j = 8;
p = j << 1;
cout<<p<<endl;
在这里,8左移一位就是8*2的结果16 。

移位运算是最有效的计算乘/除乘法的运算之一。

按位与(&)其功能是参与运算的两数各对应的二进制位相与。只有对应的两个二进制位均为1时,结果位才为1,否则为0 。参与运算的数以补码方式出现。

先举一个例子如下:

题目:请实现一个函数,输入一个正数,输出该数二进制表示中1的个数。

int count(BYTE n)
{

int num = 0;
while(n){

n &= (n – 1);
num++;
}
return num;
}

这里用到了这样一个知识点:把一个整数减去1,再和原整数做与运算,会把该整数最右边一个1变成0 。 那么一个整数的二进制表示中有多少个1,就可以进行多少次这样的操作。

总结:把一个整数减去1之后再和原来的整数做位与运算,得到的结果相当于是把整数的二进制表示中的最右边一个1变成0 。

位运算的应用可以运用于很多场合:

清零特定位(mask中特定位置0,其它位为1 , s = s & mask)。
取某数中指定位(mask中特定位置,其它位为0, s = s & mask)。
举例:输入两个整数m和n,计算需要改变m的二进制表示中的多少位才能得到n。

解决方法:第一步,求这两个数的异或;第二步,统计异或结果中1的位数。

#include
using namespace std;
int main()
{

int a = 10 , b =13 , count = 0;
int c;
c = a ^ b;
while©{

c &= (c – 1);
count++;
}
cout<<count<<endl;

return 0;  

}
接下来我们再举一例,就可以更好的说明移位运算了:用一条语句判断一个整数是不是2的整数次方。

解决方法:一个整数如果是2的整数次方,那么它的二进制表示中有且只有一位是1,而其它所有位都是0 。 根据前面的分析,把这个整数减去1后再和它自己做与运算,这个整数中唯一的1就变成0了。

解答:!(x & (x – 1))

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/134994.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号