大家好,又见面了,我是你们的朋友全栈君。
pyhton代码和echarts代码
option = {
toolbox: {
show: true,
feature: {
dataView: {
show:true},
saveAsImage: {
//excludeComponents :['toolbox'],
pixelRatio: 20
}
}
},
tooltip: {
legend: {
},
trigger: 'axis',
axisPointer: {
type: 'none'
},
formatter: function (params) {
return params[0].name + ': ' + params[0].value;
}
},
xAxis: {
data: ['建设艺术馆', '建设科技创展馆', '建设儒商文化长廊', '建设财经特色博物馆', '建设茶园校区文化景观集群' ,'其他'],
axisTick: {
show: false},
axisLine: {
show: false},
axisLabel: {
textStyle: {
color: '#00000',
},
//rotate:90,
interval: 0,
formatter:function(value)
{
return value.split("").join("\n");
},
textStyle: {
fontSize : 16 //更改坐标轴文字大小
}
}
},
yAxis: {
splitLine: {
show: false},
axisTick: {
show: false},
axisLine: {
show: false},
axisLabel: {
show: false}
},
grid: [
{
bottom: '50%'},
{
top: '10%'}
],
color: ['#89DA4F','#FCC828','#8EC7F4','#CDCBEC','#14B961'],
series: [{
name: 'hill',
barWidth :99,
type: 'pictorialBar',
barCategoryGap: '0%',
// symbol: 'path://M0,10 L10,10 L5,0 L0,10 z',
symbol: 'path://path://M10 600 Q 95 0 180 600',
label:{
normal:{
show: true,
position: 'top',
formatter:'{c}%',
fontSize:19
}
},
itemStyle: {
normal: {
opacity: 1,
color: function (params){
var colorList = ['#89DA4F','#FCC828','#8EC7F4','#CDCBEC','#14B961','#FF99FF'];
return colorList[params.dataIndex];
}
},
emphasis: {
opacity: 1
}
},
data: [18.28, 27.03, 10.27, 21.70, 13.88,8.83],
}]
};
var scale = 1;
option = {
tooltip : {
trigger: 'item',
formatter: "{a} <br/>{b} : {c} ({d}%)"
},
title: {
text:'学生',
left:'center',
top:'47%',
// padding:[24,0],
textStyle:{
color:'#031f2d',
fontSize:20*scale,
align:'center'
}
},
series: [
{
name: '半径模式',
type: 'pie',
radius: [50, 130],
center: ['50%', '50%'],
roseType: 'radius',
labelLine:{
normal:{
length:0.1, // 改变标示线的长度
lineStyle: {
}
},
},
avoidLabelOverlap: false,
hoverAnimation: true,
label: {
emphasis: {
//中间文字显示
show: false,
}
},
emphasis: {
label: {
show: true,
}
},
data: [
{
value: 35, name: '新建一些亭台楼阁\n休读和休闲点',
},
{
value: 19, name: '完善校内人性化人行步道\n系统',
itemStyle: {
color: '#FF9966',
},
},
{
value: 5, name: '再建一些先贤大儒代表\n人物雕塑群或代表我校\n大学精神的雕塑群',
itemStyle: {
color: '#CC99CC',
},
},
{
value: 19, name: '美化现有建筑物环境和墙面'},
{
value: 19, name: '开展主题化区域绿化\n(如桂花区香樟区等)'},
{
value: 2, name: '其他'},
]
},
]
};
option = {
toolbox: {
show: true,
feature: {
dataView: {
show:true},
saveAsImage: {
//excludeComponents :['toolbox'],
pixelRatio: 20
}
}
},
series: [
{
name: '半径模式',
type: 'pie',
radius: [50, 110],
center: ['49%', '29%'],
roseType: 'radius',
labelLine:{
normal:{
length:0.1, // 改变标示线的长度
lineStyle: {
}
},
},
avoidLabelOverlap: false,
label: {
normal: {
show: true,
position: 'center',
color:'#4c4a4a',
formatter: '{total|'+'学生}',
rich: {
total:{
fontSize: 18,
fontFamily : "微软雅黑",
color:'#454c5c'
},
active: {
fontFamily : "微软雅黑",
fontSize: 17,
color:'#6c7a89',
lineHeight:30,
},
}
},
emphasis: {
//中间文字显示
show: true,
}
},
data: [
{
value: 36.56, name: '新建一些亭台楼阁\n休读和休闲点',
},
{
value: 18.51, name: '完善校内人性化人行步道\n系统',
itemStyle: {
color: '#FF9966',
},
},
{
value: 4.65, name: '再建一些先贤大儒代表\n人物雕塑群或代表我校\n大学精神的雕塑群',
itemStyle: {
color: '#CC99CC',
},
},
{
value: 19.53, name: '美化现有建筑物环境和墙面'},
{
value: 18.51, name: '开展主题化区域绿化\n(如桂花区香樟区等)'},
{
value: 2.25, name: '其他'},
]
},
{
name: '半径模式',
type: 'pie',
radius: [50, 130],
center: ['23%', '70%'],
roseType: 'radius',
labelLine:{
normal:{
length:0.1, // 改变标示线的长度
lineStyle: {
}
},
},
avoidLabelOverlap: false,
label: {
normal: {
show: true,
position: 'center',
color:'#4c4a4a',
formatter: '{total|'+'教师}',
rich: {
total:{
fontSize: 18,
fontFamily : "微软雅黑",
color:'#454c5c'
},
active: {
fontFamily : "微软雅黑",
fontSize: 17,
color:'#6c7a89',
lineHeight:30,
},
}
},
emphasis: {
//中间文字显示
show: true,
}
},
data: [
{
value: 23.06, name: '新建一些亭台楼阁\n休读和休闲点',
},
{
value: 28.15, name: '完善校内人性化人行步道\n系统',
itemStyle: {
color: '#FF9966',
},
},
{
value: 4.83, name: '再建一些先贤大儒代表\n人物雕塑群或代表我校\n大学精神的雕塑群',
itemStyle: {
color: '#CC99CC',
},
},
{
value: 15.01, name: '美化现有建筑物环境和墙面'},
{
value: 24.93, name: '开展主题化区域绿化\n(如桂花区香樟区等)'},
{
value: 4.02, name: '其他'},
]
}, {
name: '半径模式',
type: 'pie',
radius: [50, 130],
center: ['77%', '70%'],
roseType: 'radius',
labelLine:{
normal:{
length:0.1, // 改变标示线的长度
lineStyle: {
}
},
},
avoidLabelOverlap: false,
label: {
normal: {
show: true,
position: 'center',
color:'#4c4a4a',
formatter: '{total|'+'校友}',
rich: {
total:{
fontSize: 18,
fontFamily : "微软雅黑",
color:'#454c5c'
},
active: {
fontFamily : "微软雅黑",
fontSize: 17,
color:'#6c7a89',
lineHeight:30,
},
}
},
emphasis: {
//中间文字显示
show: true,
}
},
data: [
{
value: 22.64, name: '新建一些亭台楼阁\n休读和休闲点',
},
{
value: 16.98, name: '完善校内人性化人行步道\n系统',
itemStyle: {
color: '#FF9966',
},
},
{
value: 11.32, name: '再建一些先贤大儒代表\n人物雕塑群或代表我校\n大学精神的雕塑群',
itemStyle: {
color: '#CC99CC',
},
},
{
value: 24.53, name: '美化现有建筑物环境和墙面'},
{
value: 20.75, name: '开展主题化区域绿化\n(如桂花区香樟区等)'},
{
value: 3.77, name: '其他'},
]
},
]
};
模糊综合评价的图
echarts代码
var pathSymbols = {
reindeer: 'image://',
plane: 'image://',
rocket: 'image://',
train: 'image://',
ship: 'image://',
};
option = {
toolbox: {
show: true,
feature: {
dataView: {
show:true},
saveAsImage: {
//excludeComponents :['toolbox'],
pixelRatio: 20
}
}
},
backgroundColor:'' ,//设置无背景色
tooltip: {
trigger: 'axis',
axisPointer: {
type: 'none'
},
formatter: function (params) {
return params[0].name + ': ' + params[0].value;
}
},
xAxis: {
data: ['很满意', '满意', '一般', '不满意', '很不满意'],
axisTick: {
show: false},
axisLine: {
show: false},
axisLabel: {
color: '#e5435',
textStyle: {
fontSize : 16 //更改坐标轴文字大小
}
}
},
yAxis: {
splitLine: {
show: false},
axisTick: {
show: false},
axisLine: {
show: true},
offset: 40,
axisLabel: {
show: true,
textStyle: {
fontSize: '13',//字体大小
},
}
},
color: ['#242424'],
series: [{
name: 'hill',
type: 'pictorialBar',
barCategoryGap: '-80%',
// symbol: 'path://M0,10 L10,10 L5,0 L0,10 z',
symbol: 'path://M0,10 L10,10 C5.5,10 5.5,5 5,0 C4.5,5 4.5,10 0,10 z',
itemStyle: {
opacity: 0.5
},
emphasis: {
itemStyle: {
opacity: 1
}
},
data: [0.339, 0.441, 0.195, 0.02, 0.005],
z: 10
}, {
name: 'glyph',
type: 'pictorialBar',
barGap: '-100%',
symbolPosition: 'end',
symbolSize: 50,
symbolOffset: [0, '-120%'],
data: [{
value: 0.339,
symbol: pathSymbols.reindeer,
symbolSize: [60, 55]
}, {
value: 0.441,
symbol: pathSymbols.rocket,
symbolSize: [60, 55]
}, {
value: 0.195,
symbol: pathSymbols.plane,
symbolSize: [60, 55]
}, {
value: 0.02,
symbol: pathSymbols.train,
symbolSize: [60, 55]
}, {
value: 0.005,
symbol: pathSymbols.ship,
symbolSize: [60, 55]
}]
}]
};
离散分布水平条形图
Discrete distribution as horizontal bar chart
import numpy as np
import matplotlib.pyplot as plt
category_names = ['Strongly disagree', 'Disagree',
'Neither agree nor disagree', 'Agree', 'Strongly agree']
results = {
'Question 1': [10, 15, 17, 32, 26],
'Question 2': [26, 22, 29, 10, 13],
'Question 3': [35, 37, 7, 2, 19],
'Question 4': [32, 11, 9, 15, 33],
'Question 5': [21, 29, 5, 5, 40],
'Question 6': [8, 19, 5, 30, 38]
}
def survey(results, category_names):
""" Parameters ---------- results : dict A mapping from question labels to a list of answers per category. It is assumed all lists contain the same number of entries and that it matches the length of *category_names*. category_names : list of str The category labels. """
labels = list(results.keys())
data = np.array(list(results.values()))
data_cum = data.cumsum(axis=1)
category_colors = plt.get_cmap('RdYlGn')(
np.linspace(0.15, 0.85, data.shape[1]))
fig, ax = plt.subplots(figsize=(9.2, 5))
ax.invert_yaxis()
ax.xaxis.set_visible(False)
ax.set_xlim(0, np.sum(data, axis=1).max())
for i, (colname, color) in enumerate(zip(category_names, category_colors)):
widths = data[:, i]
starts = data_cum[:, i] - widths
ax.barh(labels, widths, left=starts, height=0.5,
label=colname, color=color)
xcenters = starts + widths / 2
r, g, b, _ = color
text_color = 'white' if r * g * b < 0.5 else 'darkgrey'
for y, (x, c) in enumerate(zip(xcenters, widths)):
ax.text(x, y, str(int(c)), ha='center', va='center',
color=text_color)
ax.legend(ncol=len(category_names), bbox_to_anchor=(0, 1),
loc='lower left', fontsize='small')
return fig, ax
survey(results, category_names)
plt.show()
多层圆环图
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['KaiTi']
plt.rcParams['axes.unicode_minus']=False
group_names=['吉祥物(73%)', '其他(3%)', '校花(16%)', '校树(8%)']
group_size=[2585,95,563,301]
subgroup_names=['', '','学生','', '','学生','', '','学生','', '','学生']
subgroup_size=[221 ,36, 2328,34, 2 ,59,56, 8 ,499,62 ,7, 232]
# Create colors
# 设置颜色
a, b, c,d=['#41555d','#646464','#969696','#DDDDDD']
# First Ring (outside)
# 外圈
fig, ax = plt.subplots()
# 设置等比例轴,x和y轴等比例
ax.axis('equal')
# 画饼图
mypie, _ = ax.pie(group_size, radius=1.3, labels=group_names, textprops={
'fontsize': 12},colors=[a, b, c,d],wedgeprops=dict(width=0.3, edgecolor='white'));
# Second Ring (Inside)
# 画第二个圆
mypie2, _ = ax.pie(subgroup_size, radius=1.3-0.3, labels=subgroup_names,textprops={
'fontsize': 11}, labeldistance=0.7, colors=['#e9f1f6', '#e3f9fd','#a1afc9','#e9f1f6', '#e3f9fd','#FFCC99','#e9f1f6', '#e3f9fd','#c0ebd7','#e9f1f6', '#e3f9fd','#edd1d8'],wedgeprops=dict(width=0.6, edgecolor='white'));
# ax.labels()
plt.margins(0,0);
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['KaiTi']
plt.rcParams['axes.unicode_minus']=False
group_names=['吉祥物(73%)', '其他(3%)', '校花(16%)', '校树(8%)']
group_size=[2585,95,563,301]
subgroup_names=['', '','学生','', '','学生','', '','学生','', '','学生']
subgroup_size=[221 ,36, 2328,34, 2 ,59,56, 8 ,499,62 ,7, 232]
# Create colors
# 设置颜色
a, b, c,d=['#a1afc9','#ffc64b','#7fecad','#DDDDDD']
# First Ring (outside)
# 外圈
fig, ax = plt.subplots()
# 设置等比例轴,x和y轴等比例
ax.axis('equal')
# 画饼图
mypie, _ = ax.pie(group_size, radius=1.3, labels=group_names, textprops={
'fontsize': 12},colors=[a, b, c,d],wedgeprops=dict(width=0.3, edgecolor='white'));
# Second Ring (Inside)
# 画第二个圆
mypie2, _ = ax.pie(subgroup_size, radius=1.3-0.5,
labels=subgroup_names,textprops = dict(rotation_mode = 'anchor',
fontsize= 11, va='center', ha='center'), colors=['#FFFFFF', '#FFFFFF','#99CCFF','#FFFFFF', '#FFFFFF','#FFFF66','#FFFFFF', '#FFFFFF','#c0ebd7','#FFFFFF', '#FFFFFF','#edd1d8'],wedgeprops=dict(width=0.6, edgecolor='white'));
# ax.labels()
plt.margins(0,0);
import matplotlib.pyplot as plt
import numpy as np
fig, ax = plt.subplots()
size = 0.3
vals = np.array([[60., 32.,12], [37., 40.,20], [29., 10.,30]])
# cmap参数接受一个值(每个值代表一种配色方案),并将该值对应的颜色图分配给当前图窗。
cmap = plt.get_cmap("tab20c")
outer_colors = cmap(np.arange(3)*4)
inner_colors = cmap(np.array([1, 2,3, 5, 6,7, 9, 10,11]))
ax.pie(vals.sum(axis=1), radius=1, colors=outer_colors,
wedgeprops=dict(width=size, edgecolor='w'))
ax.pie(vals.flatten(), radius=1-size, colors=inner_colors,
wedgeprops=dict(width=size, edgecolor='w'))
ax.set(aspect="equal", title='Pie plot with `ax.pie`')
plt.show()
import numpy as np
import matplotlib.pyplot as plt
y = [31.21,12.81,13.32,20.97,20.8,0.9]
y1 = [19.3,19.3,17.96,24.93,16.09,2.41]
y2 = [32.97,12.03,12.67,20.43,21.2,0.71]
y3= [11.32,13.21,18.87,24.53,30.19,1.89]
font = {
'family':'simhei',#这里必须要有第12行的操作前提
'weight': 'normal',
'size': 12,
};
index=np.arange(len(y));
#x = ['REST','LAPT','AUTO']
x = ['吉祥物公仔','校服','文化摆件','实用工具','重要纪念日产品','其他'] #总共有几组,就设置成几,我们这里有三组,所以设置为3
fig,axes=plt.subplots(nrows=2,ncols=2,figsize=(9,4))
plt.subplot(2,2,1)
plt.bar(x, y,label='教师、学生与校友 ',color='#4B4B4B',hatch='\\',width=0.5)
plt.xticks(rotation=15)
plt.legend(loc = "best",prop=font,labelspacing=1)
for a,b in zip(index,y): #柱子上的数字显示
plt.text(a,b,'%.2f'%b + '%',ha='center',va='bottom',fontsize=10);
# plt.tight_layout()
plt.subplot(2,2,2)
plt.barh(x, y1, color = "#969696",label='教师',hatch="/")
plt.legend(loc = "best",prop=font,labelspacing=1)
# plt.tight_layout()
plt.subplot(2,2,3)
plt.barh(x, y2, color = "#75878a",label='学生',hatch="//")
plt.legend(loc = "best",prop=font,labelspacing=1)
plt.tight_layout()
plt.subplot(2,2,4)
plt.barh(x, y3, color = "#DDDDDD",label='校友',hatch="///")
plt.legend(loc = "best",prop=font,labelspacing=1)
plt.tight_layout()
plt.show()
plt.savefig(r'C:\Users\Administrator\Desktop\ig_cat.jpg', dpi=500) #指定分辨率保存
import numpy as np
import matplotlib.pyplot as plt
plt.figure(figsize=(6,5),dpi=150)
x1=np.array([1.5,10.52,87.89])
labels=["校友(1.5%)","教师(10.52%)","学生(87.89%)"]
plt.rcParams['font.sans-serif']=['KaiTi']
plt.rcParams['axes.unicode_minus']=False
plt.pie(x1,labels=labels,radius=1.0,
wedgeprops=dict(width=0.4,edgecolor='w'), textprops={
'fontsize': 12},colors=['#FFCC99','#CCFF66','#99CCFF'])
plt.show()
# 导入绘图模块
import matplotlib.pyplot as plt
# 构建数据
price = [39.5, 39.9, 45.4, 38.9, 33.34]
# 绘图
plt.barh(range(5), price, align='center', color='steelblue', alpha=0.8)
# 添加轴标签
plt.xlabel('price')
# 添加标题
# plt.title('Books at different prices')
# 添加刻度标签
plt.yticks(range(5), ['a', 'b', 'c', 'd', 'e'])
# 设置Y轴的刻度范围
plt.xlim([32, 47])
# 为每个条形图添加数值标签
for x, y in enumerate(price):
plt.text(y + 0.1, x, '%s' % y, va='center')
plt.savefig('foo.png')
# 显示图形
plt.show()
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import seaborn as sns
sns.set(style="whitegrid")
df =pd.read_clipboard()
df
plt.rcParams['font.sans-serif'] = ['SimHei'] #用来显示中文标签
plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号
plt.rcParams['savefig.dpi'] = 100 # 图片像素
plt.rcParams['figure.dpi'] = 100 # 分辨率
x = df.index
fig,axes=plt.subplots(nrows=1,ncols=3,figsize=(10,6))
plt.subplot(1,3,1)
sns.barplot(x,df['总的'],palette=sns.hls_palette(8 , l = .8, s = .5))
plt.xticks([]) # 不显示x轴
plt.ylabel('教师、学生与校友', fontsize=10)
plt.yticks([]) # 不显示y轴
# plt.title('教师、学生与校友')
plt.subplot(1.3,2)
sns.barplot(x,df['学生'],palette=sns.light_palette('red',reverse=False))
plt.xticks([]) # 不显示x轴
plt.ylabel('学生')
plt.yticks([]) # 不显示y轴
plt.subplot(1,3,3)
sns.barplot(x,df['教师'],palette=sns.color_palette('Greens'))
plt.xticks([]) # 不显示x轴
plt.ylabel('教师')
plt.yticks([]) # 不显示y轴
plt.subplot(4,1,4)
sns.barplot(x,df['校友'],palette=sns.color_palette('Blues'))
plt.xticks(rotation=14) # 不显示x轴
plt.ylabel('校友')
plt.yticks([]) # 不显示y轴
plt.tick_params(labelsize=8)
plt.savefig(r'C:\Users\Administrator\Desktop\2fig_cat.jpg', dpi=500) #指定分辨率保存
import pandas as pd
import time
import numpy as np
from matplotlib import pyplot as plt
dates = pd.date_range('20170101', periods=300)
df = pd.DataFrame(np.random.rand(300,4), index=dates, columns=list('ABCD'))
# ///按月份对商品数据求和
date_groupby = df.groupby(lambda x:pd.datetime.strftime(x,'%Y-%m')).apply(sum)
# ///统计四种商品的出货总量占比
date_sum = df.apply(sum)
date_ratio = date_sum/date_sum.sum()
fig = plt.figure(figsize=(8,9))
ax_0 = fig.add_subplot(3, 1, 1 )
ax_0_twin = ax_0.twinx()
ax_0_twin.bar(date_groupby.index,date_groupby["A"],width = 0.2,label = "A")
plt.ylim((0, 25))
ax_0.plot(date_groupby.index,date_groupby["B"],color = "r", label = "B")
ax_0_twin.set_title(r'Distribution over month',fontsize=15)
ax_0.legend(loc=2, prop={
'size': 12})
ax_0_twin.legend(loc=1, prop={
'size': 12})
ax_0.set_ylabel(r'B_count',fontsize=11)
ax_0_twin.set_ylabel(r'A_count',fontsize=11)
ax_1 = fig.add_subplot(3, 2, 3 )
rng = np.random.RandomState(10)
colors = rng.rand(50)
sc = ax_1.scatter(df["A"].iloc[0:50],df["B"].iloc[0:50],
c=colors,s=100*df["C"].iloc[0:50])
plt.colorbar(sc)
ax_2 = fig.add_subplot(3, 2, 4 )
ax_2.pie(date_ratio,
labels=date_ratio.index , autopct = '%3.1f%%',
startangle = 180, shadow = True)
ax_3 = fig.add_subplot(3, 1, 3 )
ax_3.hist(df["A"],bins = 100)
ax_3.set_title(r'A hist over day',fontsize=15)
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import seaborn as sns
import matplotlib.patches as mpatches
sns.set(style="whitegrid")
df =pd.read_clipboard()
df
plt.rcParams['font.sans-serif'] = ['SimHei'] #用来显示中文标签
plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号
x = df.index
fig,axes=plt.subplots(nrows=1,ncols=3,figsize=(6,4))
plt.subplot(1,3,1)
sns.barplot(x,df['学生'],palette=sns.hls_palette(8 , l = .8, s = .5))
plt.xticks([]) # 不显示x轴
plt.xlabel('学生', fontsize=14)
plt.yticks([]) # 不显示y轴
plt.ylabel(' ')
ax=plt.gca()
box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width , box.height])
patches=[mpatches.Patch(color='#DFBBB9', label='建设5G校园')]
ax.legend(handles=patches, bbox_to_anchor=(1,1)) #生成legend
plt.subplot(1,3,2)
sns.barplot(x,df['教师'],palette=sns.hls_palette(8 , l = .8, s = .5))
plt.xticks([]) # 不显示x轴
plt.xlabel('教师', fontsize=14)
plt.yticks([]) # 不显示y轴
plt.ylabel(' ')
ax=plt.gca()
box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width , box.height])
patches=[mpatches.Patch(color='#B9DDDF', label='建设"只跑一次\n或一次不跑"\n高效管理服务平台')]
ax.legend(handles=patches,loc=2) #生成legend
plt.subplot(1,3,3)
sns.barplot(x,df['校友'],palette=sns.hls_palette(8 , l = .8, s = .5))
plt.xticks([]) # 不显示x轴
plt.xlabel('校友', fontsize=14)
plt.yticks([]) # 不显示y轴
plt.ylabel(' ')
ax=plt.gca()
box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width , box.height])
patches=[mpatches.Patch(color='#DFD8B9', label='打造凸显大学精神的\n网络文化产品')]
ax.legend(handles=patches,loc=1) #生成legend
plt.savefig(r'C:\Users\Administrator\Desktop\2fig_cat.jpg', dpi=500) #指定分辨率保存
相关系数热力图
import plotly.figure_factory as ff
corrs = df.corr()
figure = ff.create_annotated_heatmap(z=corrs.values,x=list(corrs.columns),y=list(corrs.index), annotation_text=corrs.round(2).values, showscale=True)
// 指定图表的配置项和数据
var option = {
tooltip: {
trigger: 'item',
formatter: "{a} <br/>{b}: {c} ({d}%)"
},
color:["#27D9C8","#D8D8D8"],
title:{
text:"80%",
left:"center",
top:"50%",
textStyle:{
color:"#27D9C8",
fontSize:36,
align:"center"
}
},
graphic:{
type:"text",
left:"center",
top:"40%",
style:{
text:"运动达标率",
textAlign:"center",
fill:"#333",
fontSize:20,
fontWeight:700
}
},
series: [
{
name: '运动情况',
type: 'pie',
radius: ['65%', '70%'],
avoidLabelOverlap: false,
label: {
normal: {
show: false,
position: 'center'
},
},
data: [
{
value: 80, name: '已完成' },
{
value: 20, name: '未完成' },
]
}
]
};
var scale = 1;
var echartData = [{
value: 2154,
name: '曲阜师范大学'
}, {
value: 3854,
name: '潍坊学院'
}, {
value: 3515,
name: '青岛职业技术学院'
}, {
value: 3515,
name: '淄博师范高等专科'
}, {
value: 3854,
name: '鲁东大学'
}, {
value: 2154,
name: '山东师范大学'
}]
var rich = {
yellow: {
color: "#ffc72b",
fontSize: 30 * scale,
padding: [5, 4],
align: 'center'
},
total: {
color: "#ffc72b",
fontSize: 40 * scale,
align: 'center'
},
white: {
color: "#fff",
align: 'center',
fontSize: 14 * scale,
padding: [21, 0]
},
blue: {
color: '#49dff0',
fontSize: 16 * scale,
align: 'center'
},
hr: {
borderColor: '#0b5263',
width: '100%',
borderWidth: 1,
height: 0,
}
}
option = {
backgroundColor: '#031f2d',
title: {
text:'总考生数',
left:'center',
top:'53%',
padding:[24,0],
textStyle:{
color:'#fff',
fontSize:18*scale,
align:'center'
}
},
legend: {
selectedMode:false,
formatter: function(name) {
var total = 0; //各科正确率总和
var averagePercent; //综合正确率
echartData.forEach(function(value, index, array) {
total += value.value;
});
return '{total|' + total + '}';
},
data: [echartData[0].name],
// data: ['高等教育学'],
// itemGap: 50,
left: 'center',
top: 'center',
icon: 'none',
align:'center',
textStyle: {
color: "#fff",
fontSize: 16 * scale,
rich: rich
},
},
series: [{
name: '总考生数量',
type: 'pie',
radius: ['42%', '50%'],
hoverAnimation: false,
color: ['#c487ee', '#deb140', '#49dff0', '#034079', '#6f81da', '#00ffb4'],
label: {
normal: {
formatter: function(params, ticket, callback) {
var total = 0; //考生总数量
var percent = 0; //考生占比
echartData.forEach(function(value, index, array) {
total += value.value;
});
percent = ((params.value / total) * 100).toFixed(1);
return '{white|' + params.name + '}\n{hr|}\n{yellow|' + params.value + '}\n{blue|' + percent + '%}';
},
rich: rich
},
},
labelLine: {
normal: {
length: 55 * scale,
length2: 0,
lineStyle: {
color: '#0b5263'
}
}
},
data: echartData
}]
};
option = {
toolbox: {
show: true,
feature: {
dataView: {
show:true},
saveAsImage: {
//excludeComponents :['toolbox'],
pixelRatio: 20
}
}
},
legend: [{
data: ['校领导', '中层干部', '教师、学生及校友'],
icon: "roundRect",
x:'center',
y:'6%',
textStyle: {
//图例文字的样式
fontSize: 14
},
},{
data: ['很满意', '满意', '一般', '不满意','很不满意'],
icon: "roundRect",
x:'center',
y:'50%',
textStyle: {
//图例文字的样式
fontSize: 14
},
}],
tooltip: {
},
dataset: {
source: [
['product', '很满意', '满意', '一般', '不满意','很不满意'],
['校领导', 16.1, 53.5, 23.6, 6.7,0.1],
['中层干部', 21, 48.4, 26.3, 4.1,0.2],
['教师、学生及校友', 33.9, 44.1, 19.5, 2,0.5]
]
},
xAxis: [
{
type: 'category', gridIndex: 0,axisLabel: {
fontSize: 15
}},
{
type: 'category', gridIndex: 1,axisLabel: {
fontSize: 15
}},
],
yAxis: [
{
gridIndex: 0},
{
gridIndex: 1}
],
grid: [
{
bottom: '57%'},
{
top: '57%'}
],
series: [
// These series are in the first grid.
{
type: 'bar', seriesLayoutBy: 'row'},
{
type: 'bar', seriesLayoutBy: 'row'},
{
type: 'bar', seriesLayoutBy: 'row'},
// These series are in the second grid.
{
type: 'bar', xAxisIndex: 1, yAxisIndex: 1},
{
type: 'bar', xAxisIndex: 1, yAxisIndex: 1},
{
type: 'bar', xAxisIndex: 1, yAxisIndex: 1},
{
type: 'bar', xAxisIndex: 1, yAxisIndex: 1},
{
type: 'bar', xAxisIndex: 1, yAxisIndex: 1}
]
};
import pandas as pd #导入数据分析模块
import numpy as np
import matplotlib.pyplot as plt #导入绘图模块
plt.rcParams['font.sans-serif']='SimHei'
data=pd.read_excel(r"C:\Users\Administrator\Desktop\数据.xlsx",index_col='身份') #读取数据
row_sum=data.sum(axis=1).apply(float) #按行求和
partion_data=data.div(row_sum,axis=0) #计算行百分比
rows,cols=data.shape #数据尺寸
fig,ax=plt.subplots(nrows=2,ncols=2,figsize=(8, 6)) #建立饼图坑
axes=ax.flatten() #将坑位展平
labels_=list(data.columns)#设置标签
colors_=["aliceblue","antiquewhite","aqua","aquamarine",'#33FF66','#FF6699'] #设置饼图配色
for row in range(rows):
explode=[0, 0, 0, 0,0,0] #初始化突出位置
explode[labels_.index(partion_data.iloc[row,:].idxmax())]=0.09 #新的突出切片
axes[row].pie(partion_data.iloc[row,:],autopct='%1.1f%%',labels=labels_,colors=colors_, explode=explode,shadow=True) #绘制子饼图
axes[row].set_title(data.index[row]) #设置标题
plt.subplots_adjust(left=None, bottom=None, right=None, top=None,wspace=0.6, hspace=0.3) #调整子图间距
plt.savefig(r"C:\Users\Administrator\Desktop\pie.png",dpi=200) #保存图片
a = pd.read_excel('C:\\Users\\Administrator\\Desktop\\a.xlsx')
plt.figure(figsize=(8,8))
plt.subplot(611)
plt.plot(a['y_true'],color='#000000',label='y_true')
plt.plot(a['GBRT'],linestyle='--',color='#808080',label='GBRT')
plt.title('y_true与梯度提升决策树预测值比较')
plt.xticks(range(8),a.iloc[:,0].tolist())
plt.legend(loc=1, prop={
'size': 10})
# plt.subplots_adjust(hspace=0.9)
plt.tight_layout()
plt.subplot(612)
plt.plot(a['y_true'],color='#000000',label='y_true')
plt.plot(a['XGBoost'],linestyle='--',color='#808080',label='XGBoot')
plt.title('y_true与XGBRegressor预测值比较')
plt.xticks(range(8),a.iloc[:,0].tolist())
plt.subplots_adjust(left=None, bottom=0.2, right=None, top=0.5, wspace=None, hspace=None)
plt.legend(loc=1, prop={
'size': 10})
plt.tight_layout()
plt.subplot(613)
plt.plot(a['y_true'],color='#000000',label='y_true')
plt.plot(a['ElasticNet'],linestyle='--',color='#808080',label='弹性网络')
plt.title('y_true与弹性网络预测值比较')
plt.xticks(range(8),a.iloc[:,0].tolist())
plt.legend(loc=1, prop={
'size': 10})
plt.tight_layout()
plt.subplot(614)
plt.plot(a['y_true'],color='#000000',label='y_true')
plt.plot(a['BayesianRidge'],linestyle='--',color='#808080',label='贝叶斯岭回归')
plt.title('y_true与贝叶斯岭回归预测值比较')
plt.xticks(range(8),a.iloc[:,0].tolist())
plt.legend(loc=1, prop={
'size': 10})
plt.tight_layout()
plt.subplot(615)
plt.plot(a['y_true'],color='#000000',label='y_true')
plt.plot(a['Bagging'],linestyle='--',color='#808080',label='Bagging')
plt.title('y_true与Bagging预测值比较')
plt.xticks(range(8),a.iloc[:,0].tolist())
plt.legend(loc=1, prop={
'size': 10})
plt.tight_layout()
plt.savefig(r'C:\Users\Administrator\Desktop\2fig_cat.jpg', dpi=500) #指定分辨率保存
.
library(tidyverse)
library(ggthemes)
coutry<-c('英国','中国大陆','美国','其他','澳大利亚','法国','日本','加拿大')
rate<-c(29.8,22.9,17.7,15.8,1,4.8,4.3,3.6)
rate_per<-paste(as.character(rate),'%',sep='')
ad<-data.frame(type=coutry,n=rate,rate_per=rate_per)
#ad = data.frame(type = c("Poster", "Billboard", "Bus", "Digital"),n = c(529, 356, 59, 81))
ad$fraction = ad$n / sum(ad$n)
ad$ymax = cumsum(ad$fraction)
ad$ymin = c(0, head(ad$ymax, n = -1))
p<-ggplot(data = ad, aes(fill = type, ymax = ymax, ymin = ymin, xmax = 4, xmin = 3)) +
geom_rect(show.legend = F,alpha=0.8) +
scale_fill_brewer(palette = 'Set3')+
coord_polar(theta = "y") +
labs(x = "", y = "", title = "",fill='地区') +
xlim(c(0, 5)) +
theme_light() +
theme(panel.grid=element_blank()) + ## 去掉白色外框
theme(axis.text=element_blank()) + ## 把图旁边的标签去掉
theme(axis.ticks=element_blank()) + ## 去掉左上角的坐标刻度线
theme(panel.border=element_blank()) + ## 去掉最外层的正方形边框
geom_text(aes(x = 4.6, y = ((ymin+ymax)/2),label = type) ,size=4)+
geom_text(aes(x = 3.5, y = ((ymin+ymax)/2),label = rate_per) ,size=3.6)
ggsave('环形.png')
分布图
library(ggplot2)
library(plyr)
set.seed(1234)
df = read.table('儿童呼吸道疾病.txt',header=T)
head(df)
mu <- ddply(df, 'Sex', summarise, grp.mean=mean(Height))
ggplot(df, aes(x=Height, fill=Sex)) +
geom_histogram(aes(y=..density..), alpha=0.3,position='identity') +
geom_density(alpha=0.3) +
geom_vline(data=mu, aes(xintercept=grp.mean,color=Sex),linetype='dashed') +
scale_color_grey() +
theme_classic()+
theme(legend.position='top')
# Data
data <- data.frame(
name = c("DD","with himself","with DC","with Silur" ,"DC","with himself","with DD","with Silur" ,"Silur","with himself","with DD","with DC" ),
average = sample(seq(1,10) , 12 , replace=T),
number = sample(seq(4,39) , 12 , replace=T)
)
# Increase bottom margin
par(mar=c(6,4,4,4))
# Basic Barplot
my_bar <- barplot(data$average , border=F , names.arg=data$name ,
las=2 ,
col=c(rgb(0.3,0.1,0.4,0.6) , rgb(0.3,0.5,0.4,0.6) , rgb(0.3,0.9,0.4,0.6) , rgb(0.3,0.9,0.4,0.6)) ,
ylim=c(0,13) ,
main="" )
# Add abline
abline(v=c(4.9 , 9.7) , col="grey")
# Add the text
text(my_bar, data$average+0.4 , paste("n: ", data$number, sep="") ,cex=1)
#Legende
legend("topleft", legend = c("Alone","with Himself","With other genotype" ) ,
col = c(rgb(0.3,0.1,0.4,0.6) , rgb(0.3,0.5,0.4,0.6) , rgb(0.3,0.9,0.4,0.6) , rgb(0.3,0.9,0.4,0.6)) ,
bty = "n", pch=20 , pt.cex = 2, cex = 0.8, horiz = FALSE, inset = c(0.05, 0.05))
# -*- coding: utf-8 -*-
""" Created on Thu Dec 17 22:12:50 2020 @author: Administrator """
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
labels = ['TE','PTE','SE']
y1 = [0.885,0.952,0.929]
y2 = [0.909,0.978,0.930]
y3= [0.921,0.988,0.932]
fig,ax = plt.subplots(1,1,figsize=(8,4.5))
x = np.arange(len(labels))
total_width, n = 0.8, 3
width = total_width / n
x = x - (total_width - width) / 2
label_font = {
'weight':'bold',
'size':14,
'family':'simsun'
}
colors = ['#9999FF','#58C9B9','#CC33CC','#D1B6E1','#99FF99','#C0C0C0']
rects1 = ax.bar(x, y1, width, label='2017年',ec='k',color='#DDDDDD',lw=.8,
hatch='xx')
rects2 = ax.bar(x + width, y2, width, label='2018年',ec='k',color='#DDDDDD',
lw=.8,hatch='')
rects3 = ax.bar(x + width * 2, y3, width, label='2019年',ec='k',color='#DDDDDD',
lw=.8,hatch='//')
# tick_params参数刻度线样式设置
# ax.tick_params(axis=‘x’, tickdir=‘in’, labelrotation=20)参数详解
# axis : 可选{‘x’, ‘y’, ‘both’} ,选择对哪个轴操作,默认是’both’
# which : 可选{‘major’, ‘minor’, ‘both’} 选择对主or副坐标轴进行操作
# direction/tickdir : 可选{‘in’, ‘out’, ‘inout’}刻度线的方向
# color : 刻度线的颜色,我一般用16进制字符串表示,eg:’#EE6363’
# width : float, 刻度线的宽度
# size/length : float, 刻度线的长度
# pad : float, 刻度线与刻度值之间的距离
# labelsize : float/str, 刻度值字体大小
# labelcolor : 刻度值颜色
# colors : 同时设置刻度线和刻度值的颜色
# bottom, top, left, right : bool, 分别表示上下左右四边,是否显示刻度线,True为显示
ax.tick_params(which='major',direction='in',length=5,width=1.5,labelsize=11,bottom=False)
ax.tick_params(axis='x',labelsize=11,bottom=False,labelrotation=0)
ax.set_xticks(range(len(labels)))
# ax.set_yticks([0,0.2,0.4,0.6,0.8,1])
ax.set_ylim(ymin = 0,ymax = 1.1)
# 0 - 1800 ,200为一个间距
ax.set_yticks(np.arange(0,1.1,0.2))
ax.set_ylabel('(效率值)',fontdict=label_font)
ax.set_xticklabels(labels,fontdict=label_font)
ax.legend(prop =label_font,loc='center', bbox_to_anchor=(0.5,1),ncol=4,frameon=False,shadow=False)
''' # 设置有边框和头部边框颜色为空right、top、bottom、left ax.spines['right'].set_color('none') ax.spines['top'].set_color('none') '''
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
# # 上下左右边框线宽
# linewidth = 2
# for spine in ['top','bottom','left','right']:
# ax.spines[spine].set_linewidth(linewidth)
# Add some text for labels, title and custom x-axis tick labels, etc.
# def autolabel(rects):
# for rect in rects:
# height = rect.get_height()
# ax.annotate('{}'.format(height),
# xy=(rect.get_x() + rect.get_width() / 2, height),
# xytext=(0, 3),
# textcoords="offset points",
# ha='center', va='bottom')
# autolabel(rects1)
# autolabel(rects2)
# autolabel(rects3)
# fig.tight_layout()
plt.savefig(r'C:\Users\Administrator\Desktop\p1.png',dpi=500)
https://blog.csdn.net/luohenyj/article/details/108348697
from palettable.colorbrewer.qualitative import Pastel1_7
import matplotlib.pyplot as plt
import numpy as np
plt.rcParams['font.sans-serif']=['KaiTi']
plt.rcParams['axes.unicode_minus']=False
fig, ax = plt.subplots(figsize=(6, 3), subplot_kw=dict(aspect="equal"))
recipe = ["标签1",
"标签2",
"标签3",
"标签4",
"标签5",
"标签6"]
data = [225, 90, 50, 60, 100, 25]
wedges, texts = ax.pie(data,colors=Pastel1_7.hex_colors,wedgeprops=dict(width=0.5), startangle=-40)
# 每一类别说明框
# boxstyle框的类型,fc填充颜色,ec边框颜色,lw边框宽度
bbox_props = dict(boxstyle="square,pad=0.3", fc='white', ec="black", lw=0.72)
# 设置框引出方式
kw = dict(arrowprops=dict(arrowstyle="-"),
bbox=bbox_props, zorder=0, va="center")
# 添加标签
for i, p in enumerate(wedges):
ang = (p.theta2 - p.theta1)/2. + p.theta1
y = np.sin(np.deg2rad(ang))
x = np.cos(np.deg2rad(ang))
# 设置方向
horizontalalignment = {
-1: "right", 1: "left"}[int(np.sign(x))]
connectionstyle = "angle,angleA=0,angleB={}".format(ang)
kw["arrowprops"].update({
"connectionstyle": connectionstyle})
# 设置标注
ax.annotate(recipe[i], xy=(x, y), xytext=(1.35*np.sign(x), 1.4*y),
horizontalalignment=horizontalalignment,color='black', **kw)
ax.set_title("Matplotlib bakery: A donut")
plt.show();
import matplotlib.pyplot as plt
group_names=['groupA', 'groupB', 'groupC']
group_size=[12,11,30]
subgroup_names=['A.1', 'A.2', 'A.3', 'B.1', 'B.2', 'C.1', 'C.2', 'C.3', 'C.4', 'C.5']
subgroup_size=[4,3,5,6,5,10,5,5,4,6]
a, b, c=[plt.cm.Blues, plt.cm.Reds, plt.cm.Greens]
fig, ax = plt.subplots()
ax.axis('equal')
mypie, _ = ax.pie(group_size, radius=1.3, labels=group_names, colors=[a(0.6), b(0.6), c(0.6)],wedgeprops=dict(width=0.3, edgecolor='white'));
mypie2, _ = ax.pie(subgroup_size, radius=1.3-0.3, labels=subgroup_names, labeldistance=0.7, colors=[a(0.5), a(0.4), a(0.3), b(0.5), b(0.4), c(0.6), c(0.5), c(0.4), c(0.3), c(0.2)],wedgeprops=dict(width=0.4, edgecolor='white'));
plt.margins(0,0);
import matplotlib.pyplot as plt
names='groupA', 'groupB', 'groupC', 'groupD',
size=[12,11,3,30]
from palettable.colorbrewer.qualitative import Pastel1_7
plt.pie(size, labels=names, colors=Pastel1_7.hex_colors,wedgeprops=dict(width=0.3, edgecolor='w'))
plt.axis('equal')
plt.show();
https://zhuanlan.zhihu.com/p/140945416
import pandas as pd
from pyecharts import options as opts
from pyecharts.charts import Pie
from pyecharts.globals import ThemeType
from pyecharts.commons.utils import JsCode
b = ["a","b"]
c = [50,80]
d = [54,90]
df_pie = pd.DataFrame({
'类别':b,'值1':c,'值2':d})
fn = """ function(params) { if(params.name == '其他') return '\\n\\n\\n' + params.name + ' : ' + params.value + '%'; return params.name + ' : ' + params.value + '%'; } """
def new_label_opts():
return opts.LabelOpts(formatter=JsCode(fn), position="center")
c = (
Pie(init_opts=opts.InitOpts(width="800px", height="450px",theme = ThemeType.VINTAGE ))
.add(
"值1",
df_pie[["类别","值1"]].values.tolist(),
center=["28%", "50%"],
radius=[90, 110],
label_opts=new_label_opts(),
)
.add(
"死亡数",
df_pie[["类别","值2"]].values.tolist(),
center=["68%", "50%"],
radius=[90, 110],
label_opts=new_label_opts(),
)
.set_global_opts(
title_opts=opts.TitleOpts(title="Python双圆环图)",pos_bottom = "85%", pos_right = "39%"),
legend_opts=opts.LegendOpts(
is_show=1,type_="scroll", pos_top="2%", pos_left="43%", orient="horizontal"
),
toolbox_opts=opts.ToolboxOpts(
# 是否显示该工具
is_show=True,
),
)
.set_series_opts(label_opts = opts.LabelOpts(is_show=1,formatter="{a}:\n{b}:{c}\n占比:{d}%") )
.render("mutiple_pie.html")
)
https://zhuanlan.zhihu.com/p/62748885
def getFrinendSex():#获取好友性别
auto_login(hotReload=True)
a=get_friends()
ls=[]
for i in a:
ls.append(i['Sex'])#性别字典键
a=['男','女','未知']
b=dict(zip(a,Counter(ls).values()))#counter统计列表中代表性别的元素(0,1,2)的个数,并替换成指定的列表a
shareN=[v/sum(b.values()) for v in b.values()]#计算各类别占比,形成列表
plt.figure(figsize=(6.4,6.4),facecolor='b')
plt.pie(x=shareN,radius=1.5,labels=a,pctdistance=1.2,labeldistance=0.8,colors=['cornflowerblue','violet','lightgreen'])
plt.pie(x=[1],radius=0.9,colors='w')#叠加一个空白的Piel图,形成环形
plt.rcParams['font.sans-serif'] = ['SimHei']#中文标签需要这个字体才能显示
plt.text(-0.7,-0.1,'微信好友性别比例',fontsize=24)#向中间空白填充此词组
plt.savefig('RawenWechatFriendSex.jpg',dpi=100)
内嵌环形饼图
https://blog.csdn.net/bubid/article/details/108095414?utm_medium=distribute.wap_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-7.wap_blog_relevant_pic&depth_1-utm_source=distribute.wap_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-7.wap_blog_relevant_pic
有道:1
有道:2
当是一个二维表时,可以做堆叠柱形图
有道:3
#提取会员不同性别人数
male = pd.value_counts(data['GENDER'])['男']
female = pd.value_counts(data['GENDER'])['女']
#绘制会员性别比例饼图
fig = plt.figure(figsize=(7, 4)) #设置画布大小
plt.pie([male, female], labels=['男', '女'], colors=['lightskyblue', 'lightcoral'], autopct='%1.1f%%')
plt.title('会员性别比例')
plt.show()
plt.close()
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/134911.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...