大家好,又见面了,我是你们的朋友全栈君。
序言
还是要持续总结,持续积累。
一、聚类的目标
使同一类对象的相似度尽可能地大;不同类对象之间的相似度尽可能地小。
二、聚类算法分类
1.基于划分
给定一个有N个元组或者纪录的数据集,分裂法将构造K个分组,每一个分组就代表一个聚类,K<
N。
特点:计算量大。很适合发现中小规模的数据库中小规模的数据库中的球状簇。
算法:K-MEANS算法、K-MEDOIDS算法、CLARANS算法
2.基于层次
对给定的数据集进行层次似的分解,直到某种条件满足为止。具体又可分为“自底向上”和“自顶向下”两种方案。
特点:较小的计算开销。然而这种技术不能更正错误的决定。
算法:BIRCH算法、CURE算法、CHAMELEON算法
3.基于密度
只要一个区域中的点的密度大过某个阈值,就把它加到与之相近的聚类中去。
特点:能克服基于距离的算法只能发现“类圆形”的聚类的缺点。
算法:DBSCAN算法、OPTICS算法、DENCLUE算法
4.基于网格
将数据空间划分成为有限个单元(cell)的网格结构,所有的处理都是以单个的单元为对象的。
特点:
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/133563.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...