反向传播算法(过程及公式推导)[通俗易懂]反向传播算法(Backpropagation)是目前用来训练人工神经网络(ArtificialNeuralNetwork,ANN)的最常用且最有效的算法。
大家好,又见面了,我是你们的朋友全栈君。
反向传播算法(Backpropagation)是目前用来训练人工神经网络(Artificial Neural Network,ANN)的最常用且最有效的算法。其主要思想是:
(1)将训练集数据输入到ANN的输入层,经过隐藏层,最后达到输出层并输出结果,这是ANN的前向传播过程;
(2)由于ANN的输出结果与实际结果有误差,则计算估计值与实际值之间的误差,并将该误差从输出层向隐藏层反向传播,直至传播到输入层;
(3)在反向传播的过程中,根据误差调整各种参数的值;不断迭代上述过程,直至收敛。
反向传播算法的思想比较容易理解,但具体的公式则要一步步推导,因此本文着重介绍公式的推导过程。
1. 变量定义
上图是一个三层人工神经网络,layer1至layer3分别是输入层、隐藏层和输出层。如图,先定义一些变量:
表示第层的第个神经元连接到第层的第个神经元的权重;
2. 代价函数
代价函数被用来计算ANN输出值与实际值之间的误差。常用的代价函数是二次代价函数(Quadratic cost function):
其中,表示输入的样本,表示实际的分类,表示预测的输出,表示神经网络的最大层数。
3. 公式及其推导
本节将介绍反向传播算法用到的4个公式,并进行推导。如果不想了解公式推导过程,请直接看第4节的算法步骤。
首先,将第层第个神经元中产生的错误(即实际值与预测值之间的误差)定义为:
本文将以一个输入样本为例进行说明,此时代价函数表示为:
公式1(计算最后一层神经网络产生的错误):
其中,表示Hadamard乘积,用于矩阵或向量之间点对点的乘法运算。
公式1的推导过程如下:
公式2(由后往前,计算每一层神经网络产生的错误):
推导过程:
公式3(计算权重的梯度):
推导过程:
公式4(计算偏置的梯度):
推导过程:
4. 反向传播算法伪代码
- 对于训练集中的每个样本x,设置输入层(Input layer)对应的激活值:
-
- 反向传播错误:
- 使用梯度下降(gradient descent),训练参数:
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/131986.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】:
Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】:
官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...