【python】详解pandas库的pd.merge函数「建议收藏」

【python】详解pandas库的pd.merge函数「建议收藏」pandas.DataFrame.mergepd.merge(left,right,how=’inner’,on=None,left_on=None,right_on=None,left_index=False,right_index=False,sort=True,suffixes=(‘_x’,’_y’),copy=True,indi…

大家好,又见面了,我是你们的朋友全栈君。

本篇详细说明merge的应用,join 和concatenate的拼接方法的与之相似。

pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None,
         left_index=False, right_index=False, sort=True,
         suffixes=('_x', '_y'), copy=True, indicator=False,
         validate=None)

参数如下:

  • left: 拼接的左侧DataFrame对象
  • right: 拼接的右侧DataFrame对象
  • on: 要加入的列或索引级别名称。 必须在左侧和右侧DataFrame对象中找到。 如果未传递且left_index和right_index为False,则DataFrame中的列的交集将被推断为连接键。
  • left_on:左侧DataFrame中的列或索引级别用作键。 可以是列名,索引级名称,也可以是长度等于DataFrame长度的数组。
  • right_on: 左侧DataFrame中的列或索引级别用作键。 可以是列名,索引级名称,也可以是长度等于DataFrame长度的数组。
  • left_index: 如果为True,则使用左侧DataFrame中的索引(行标签)作为其连接键。 对于具有MultiIndex(分层)的DataFrame,级别数必须与右侧DataFrame中的连接键数相匹配。
  • right_index: 与left_index功能相似。
  • how: One of ‘left’, ‘right’, ‘outer’, ‘inner’. 默认inner。inner是取交集,outer取并集。比如left:[‘A’,‘B’,‘C’];right[’’A,‘C’,‘D’];inner取交集的话,left中出现的A会和right中出现的买一个A进行匹配拼接,如果没有是B,在right中没有匹配到,则会丢失。’outer’取并集,出现的A会进行一一匹配,没有同时出现的会将缺失的部分添加缺失值。
  • sort: 按字典顺序通过连接键对结果DataFrame进行排序。 默认为True,设置为False将在很多情况下显着提高性能。
  • suffixes: 用于重叠列的字符串后缀元组。 默认为(‘x’,’ y’)。
  • copy: 始终从传递的DataFrame对象复制数据(默认为True),即使不需要重建索引也是如此。
  • indicator:将一列添加到名为_merge的输出DataFrame,其中包含有关每行源的信息。 _merge是分类类型,并且对于其合并键仅出现在“左”DataFrame中的观察值,取得值为left_only,对于其合并键仅出现在“右”DataFrame中的观察值为right_only,并且如果在两者中都找到观察点的合并键,则为left_only。

1、基础实例:

import pandas as pd

left = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
                       'A': ['A0', 'A1', 'A2', 'A3'],
                       'B': ['B0', 'B1', 'B2', 'B3']})
right = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
                        'C': ['C0', 'C1', 'C2', 'C3'],
                        'D': ['D0', 'D1', 'D2', 'D3']})
result = pd.merge(left, right, on='key')

# on参数传递的key作为连接键
result
Out[4]: 
    A   B key   C   D
0  A0  B0  K0  C0  D0
1  A1  B1  K1  C1  D1
2  A2  B2  K2  C2  D2
3  A3  B3  K3  C3  D3

2、传入的on的参数是列表:

left = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'],
                      'key2': ['K0', 'K1', 'K0', 'K1'],
                         'A': ['A0', 'A1', 'A2', 'A3'],
                         'B': ['B0', 'B1', 'B2', 'B3']})

right = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'],
                      'key2': ['K0', 'K0', 'K0', 'K0'],
                         'C': ['C0', 'C1', 'C2', 'C3'],
                         'D': ['D0', 'D1', 'D2', 'D3']})

result = pd.merge(left, right, on=['key1', 'key2'])
# 同时传入两个Key,此时会进行以['key1','key2']列表的形式进行对应,left的keys列表是:[['K0', 'K0'],['K0', 'K1'],['K1', 'K0'],['K2', 'K1']],
left的keys列表是:[['K0', 'K0'],['K1', 'K0'],['K1', 'K0'],['K2', 'K0']],因此会有1个['K0', 'K0']、2个['K1', 'K0']对应。

result
Out[6]: 
    A   B key1 key2   C   D
0  A0  B0   K0   K0  C0  D0
1  A2  B2   K1   K0  C1  D1
2  A2  B2   K1   K0  C2  D2

3、Merge method
如果组合键没有出现在左表或右表中,则连接表中的值将为NA。

Merge method SQL Join Name Description
left LEFTOUTER JOIN Use keys from left frame only
right RIGHT OUTER JOIN Use keys from right frame only
outer FULL OUTER JOIN Use union of keys from both frames
inner INNER JOIN Use intersection of keys from both frames
result = pd.merge(left, right, how='left', on=['key1', 'key2'])
# Use keys from left frame only
result
Out[34]: 
    A   B key1 key2    C    D
0  A0  B0   K0   K0   C0   D0
1  A1  B1   K0   K1  NaN  NaN
2  A2  B2   K1   K0   C1   D1
3  A2  B2   K1   K0   C2   D2
4  A3  B3   K2   K1  NaN  NaN

result = pd.merge(left, right, how='right', on=['key1', 'key2'])
# Use keys from right frame only
result
Out[36]: 
     A    B key1 key2   C   D
0   A0   B0   K0   K0  C0  D0
1   A2   B2   K1   K0  C1  D1
2   A2   B2   K1   K0  C2  D2
3  NaN  NaN   K2   K0  C3  D3

result = pd.merge(left, right, how='outer', on=['key1', 'key2'])
# Use intersection of keys from both frames 
result
Out[38]: 
     A    B key1 key2    C    D
0   A0   B0   K0   K0   C0   D0
1   A1   B1   K0   K1  NaN  NaN
2   A2   B2   K1   K0   C1   D1
3   A2   B2   K1   K0   C2   D2
4   A3   B3   K2   K1  NaN  NaN
5  NaN  NaN   K2   K0   C3   D3
-----------------------------------------------------
left = pd.DataFrame({'A' : [1,2], 'B' : [2, 2]})
right = pd.DataFrame({'A' : [4,5,6], 'B': [2,2,2]})
result = pd.merge(left, right, on='B', how='outer')
result
Out[40]: 
   A_x  B  A_y
0    1  2    4
1    1  2    5
2    1  2    6
3    2  2    4
4    2  2    5
5    2  2    6

4、传入indicator参数
merge接受参数指示符。 如果为True,则将名为_merge的Categorical类型列添加到具有值的输出对象:

Observation Origin _merge value
Merge key only in ‘left’ frame left_only
Merge key only in ‘right’ frame right_only
Merge key in both frames
df1 = pd.DataFrame({'col1': [0, 1], 'col_left':['a', 'b']})
df2 = pd.DataFrame({'col1': [1, 2, 2],'col_right':[2, 2, 2]})
pd.merge(df1, df2, on='col1', how='outer', indicator=True)

Out[44]: 
   col1 col_left  col_right      _merge
0   0.0        a        NaN   left_only
1   1.0        b        2.0        both
2   2.0      NaN        2.0  right_only
3   2.0      NaN        2.0  right_only

指标参数也将接受字符串参数,在这种情况下,指标函数将使用传递的字符串的值作为指标列的名称。

pd.merge(df1, df2, on='col1', how='outer', indicator='indicator_column')
Out[45]: 
   col1 col_left  col_right indicator_column
0   0.0        a        NaN        left_only
1   1.0        b        2.0             both
2   2.0      NaN        2.0       right_only
3   2.0      NaN        2.0       right_only

5、以index为链接键
需要同时设置left_index= True 和 right_index= True,或者left_index设置的同时,right_on指定某个Key。总的来说就是需要指定left、right链接的键,可以同时是key、index或者混合使用。

left = pd.DataFrame({'A': ['A0', 'A1', 'A2'],
   ....:                      'B': ['B0', 'B1', 'B2']},
   ....:                      index=['K0', 'K1', 'K2'])
   ....: 
right = pd.DataFrame({'C': ['C0', 'C2', 'C3'],
   ....:                       'D': ['D0', 'D2', 'D3']},
   ....:                       index=['K0', 'K2', 'K3'])
   ....: 

# 只有K0、K2有对应的值
pd.merge(left,right,how= 'inner',left_index=True,right_index=True)
Out[51]: 
     A   B   C   D
K0  A0  B0  C0  D0
K2  A2  B2  C2  D2


left = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
                     'B': ['B0', 'B1', 'B2', 'B3'],
                   'key': ['K0', 'K1', 'K0', 'K1']})


right = pd.DataFrame({'C': ['C0', 'C1'],
                      'D': ['D0', 'D1']},
                    index=['K0', 'K1'])


result = pd.merge(left, right, left_on='key', right_index=True, how='left', sort=False)
#  left_on='key', right_index=True
result
Out[54]: 
    A   B key   C   D
0  A0  B0  K0  C0  D0
1  A1  B1  K1  C1  D1
2  A2  B2  K0  C0  D0
3  A3  B3  K1  C1  D1

6、sort对链接的键值进行排序:

紧接着上一例,设置sort= True
result = pd.merge(left, right, left_on='key', right_index=True, how='left', sort=True)

result
Out[57]: 
    A   B key   C   D
0  A0  B0  K0  C0  D0
2  A2  B2  K0  C0  D0
1  A1  B1  K1  C1  D1
3  A3  B3  K1  C1  D1

对于多重索引,目前应用较少,就不做深入学习,以后有需要再加。

总的来说,merge的应用场景是针对链接键来进行操作的,链接键可以是index或者column。但是实际应用时一定注意的是left或者right的键值不要重复,这样引来麻烦。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/130644.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • server宕机监控、检測、报警程序(139绑定手机短信报警)monitor_down.sh

    server宕机监控、检測、报警程序(139绑定手机短信报警)monitor_down.sh

  • 2022年流动式起重机司机考试题库模拟考试平台操作「建议收藏」

    2022年流动式起重机司机考试题库模拟考试平台操作「建议收藏」题库来源:安全生产模拟考试一点通公众号小程序2022年流动式起重机司机特种作业证考试题库系流动式起重机司机考题的多种练习模式!2022年流动式起重机司机考试题库模拟考试平台操作根据流动式起重机司机考前押题。流动式起重机司机全部考试题库通过安全生产模拟考试一点通上错题练习。1、【多选题】《中华人民共和国特种设备安全法》规定,特种设备生产、经营、使用单位()被查封、扣押的特种设备或者其主要部件的,责令改正,处五万元以上二十万元以下罚款;情节严重的,吊销生产许可证,注销特种设备使用登记证书。(A..

  • java中接口的定义与实现

    java中接口的定义与实现

    2021年11月13日
  • pycharm选择运行环境_安卓漂亮的界面

    pycharm选择运行环境_安卓漂亮的界面手把手教你配置最漂亮的PyCharm界面,Python程序员必备!简介:高逼格超美的IDE界面,是每个程序员的梦想!随着人工智能/机器学习的兴起,Python作为一门“漂亮的语言”,再次获得广大程序员的关注。而JetBrains出品的PyCharm无疑是最好用的PythonIDE之一。俗话说“工欲善其事,必先利其器”,把自己的IDE配置得既有逼格又好看,这是每个Python程序员必备的技能。推荐给大家一个学习交流的地方:719+139+688,本文就手把手的教你,如何把自己的PyCharm配置的

  • PAT乙级——1003

    PAT乙级——1003题目:我要通过!(20分)“答案正确”是自动判题系统给出的最令人欢喜的回复。本题属于PAT的“答案正确”大派送——只要读入的字符串满足下列条件,系统就输出“答案正确”,否则输出“答案错误”。得到“答案正确”的条件是:字符串中必须仅有P、A、T这三种字符,不可以包含其它字符;任意形如xPATx的字符串都可以获得“答案正确”,其中x或者是空字符串,或者是仅由字母A…

  • 软件开发的一些概念

    10.关系数据库(RelationalDatabases)关系数据库因为在大规模Web服务上缺乏可扩充性而颇受微词,然而,关系数据库仍然是近20年来计算机技术中最伟大的成就。关系数据库对处

    2021年12月23日

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号