matlab 二分法区间,多区间二分法[通俗易懂]

&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp&nbsp预备知识 二分法这里介绍一种多区间二分法,可以求出连续函数在某区间内几乎全部的根.方法就是把这个区间等分为若干个相等的小区间,然后分别判断这些小区间两端函数值的符号,对所有两端异号的区间使用二分法即可.显然,小区间的个数越多,越有可能找到所有的根.例程如下.代码1:bis…

大家好,又见面了,我是你们的朋友全栈君。

&nbsp

&nbsp

&nbsp

&nbsp

&nbsp

&nbsp

&nbsp

预备知识 二分法

这里介绍一种多区间二分法,可以求出连续函数在某区间内几乎全部的根.方法就是把这个区间等分为若干个相等的小区间,然后分别判断这些小区间两端函数值的符号,对所有两端异号的区间使用二分法即可.显然,小区间的个数越多,越有可能找到所有的根.例程如下.

代码 1:bisectionN.m

函数的前两个输入变量分别是需要求根的函数句柄和求根区间(二元行矢量或列矢量),第三个变量 $N$ 是子区间端点的个数(即子区间的个数加一).函数中先求出所有的端点 x,以及对应的函数值 y,然后画图.第 6-7 行寻找所有两端异号或有一端为 0 的区间的序号,然后在第 10 行的循环中对这些区间逐个使用二分法.为了提高运算效率,这里并没有使用 “二分法” 中的例程,而是使用了 Matlab 自带的 fzero 函数.

bisectionN 的画图功能是为了让用户判断是否有可能出现漏根,以下举两个例子说明.>> f = @(x)exp(-0.2*x)*sin(x);

>> roots = bisectionN(f, [0, 15], 50)

roots = 0 3.1416 6.2832 9.4248 12.5664

MBisec_1.svg?v=f4593b2f6e7d41

图 1:运行结果

运行结果如图 1,由于画出的曲线较为光滑,可判断漏根的可能性很小.再看另一个例子>> f = @(x)sin(1/x);

>> roots = bisectionN(f, [0, 0.3], 50)

roots = 0.0245 0.0398 0.0455 0.0531 0.0637 0.0796 0.1061 0.1592

MBisec_2.svg?v=52c58dea5c9a75

图 2:运行结果

我们已经知道函数 $ \sin\left(1/x\right) $ 在该区间上有无数个根,且越接近 $x = 0$,相邻根之间的距离越小.运行结果如图 2, 可见在区间 $[0, 0.1]$ 内,子区间端点的函数值非常不平滑,极有可能出现漏根.为了求得更多的根,我们可以增加子区间的个数.

致读者: 小时百科一直以来坚持所有内容免费无广告,这导致我们处于严重的亏损状态。 长此以往很可能会最终导致我们不得不选择会员制,大量广告,内容付费等。 因此,我们请求广大读者热心打赏,使网站得以健康发展。 如果看到这条信息的每位读者能慷慨打赏 10 元,我们一个星期内就能脱离亏损, 并保证网站能在接下来的一整年里向所有读者继续免费提供优质内容。 但遗憾的是只有不到 1% 的读者愿意捐款, 他们的付出帮助了 99% 的读者免费获取知识, 我们在此表示感谢。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/128159.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • ioszip怎么解压_苹果解压app推荐

    ioszip怎么解压_苹果解压app推荐本文介绍了iOS中如何实现gzip解压!

  • 一些sql三

    1、1=1,1=2的使用,在SQL语句组合时用的较多“where 1=1” 是表示选择全部“where 1=2”全部不选,如:if @strWhere&#1

    2021年12月25日
  • java 反编译器_代码反编译到数据库

    java 反编译器_代码反编译到数据库xjad反编译工具下载使用反编译时把class文件直接拖拽至工具内即可,如果反编译结果不对时把class文件重新去拿原始的不要编辑打开,或者放在一个文件夹内在试。反编译后的代码没有注释、注解等,反正能用得细心看看调整。点击下载工具http://a.xzfile.com/down2/XJadfanbinayi_downcc.zip…

  • object finalized_finalize()方法

    object finalized_finalize()方法一、一次标记首先finalize方法是在垃圾回收时,用于确认该对象是否确认被回收的一个标记过程。确认一个对象真正被回收需要经历两次标记过程:可达性分析没有引用,这是第一次标记是否有必要执行finalize方法,如果对象没有重写finalize方法或者finalize方法已经被调用过了,那么finalize方法就是没有必要执行的,没有必要执行finalize方法的对象就会被直接回收。如果对象被判定为有必要执行finalize()方法,那么这个对象将会放置在一个叫做F-Queue的队列之中,并在稍后

  • 去掉dedecms底部调用cfg_powerby

    去掉dedecms底部调用cfg_powerby**使用dedecms做网站,首页底部调cfg_powerby的时候出现powerbydedecms的链接信息。****文件路径:include/dedesql.class.php第588到第592行代码删除即可,代码如下图:**

  • 自监督学习(Self-supervised Learning)

    自监督学习(Self-supervised Learning)自监督学习(Self-supervisedlearning)是这两年比较热门的一个研究领域,它旨在对于无标签数据,通过设计辅助任务(Proxytasks)来挖掘数据自身的表征特性作为监督信息,来提升模型的特征提取能力

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号