opencv跟踪视频上的目标(理论分析框架)

出处:http://hi.baidu.com/icekeydnet/blog/item/965b25154a19f3dea6ef3ffe.html如前面说到的,OpenCVVS提供了6组算法的接口,分别是:前景检测、新目标检测、目标跟踪、轨迹生成、跟踪后处理、轨迹分析,除了轨迹生成用于轨迹数据的保存以外,其他5个部分都是标准的视频监控算法体系中不可或缺的部分。      OpenC

大家好,又见面了,我是你们的朋友全栈君。

出处:http://hi.baidu.com/icekeydnet/blog/item/965b25154a19f3dea6ef3ffe.html

如前面说到的,OpenCV VS提供了6组算法的接口,分别是:前景检测、新目标检测、目标跟踪、轨迹生成、跟踪后处理、轨迹分析,除了轨迹生成用于轨迹数据的保存以外,其他5个部分都是标准的视频监控算法体系中不可或缺的部分。

       OpenCV在Blob_Tracking_Modules.doc文档中,提供了算法的关系图.

图中唯独缺少了轨迹分析部分,可能是因为在该文档形成的时候轨迹分析部分还没有完成。重新整理后如下。

 

下面针对VS算法体系中的各个算法接口进行介绍,并给出算法的参考文献。

1 算法流程控制(CvBlobTrackerAuto)

       整个视频监控算法流程的设置和数据的传递在接口类CvBlobTrackerAuto的子类中完成,VS中提供了一个范本,就是CvBlobTrackerAuto1,该类是接口CvBlobTrackerAuto的子类,通过查看CvBlobTrackerAuto1::Process(),可以洞悉整个算法的标准流程。当然您也可以在遵循接口CvBlobTrackerAuto的基础上进行扩展。

用户调用接口:

CvBlobTrackerAuto* cvCreateBlobTrackerAuto1(CvBlobTrackerAutoParam1* param);

 

2 前景检测(CvFGDetector):

       CvFGDetector是前景检测类的接口,前景检测一般是指提取固定场景中运动部分的像素,比较常用的一大类方法是背景差。在其子类CvFGDetectorBase中包含了两种背景差方法的实现:

(1)《Foreground Object Detection from Videos Containing Complex Background》2003

(2)《An Improved Adaptive Background Mixture Model for Real-time tracking with shadow detection》 2001

后者就被广泛研究和应用的混合高斯模型背景差(MOG-Mixture Of Gaussians),其开创者是MIT的著名学者Chris Stauffer,可参考文献《Learning patterns of activity using real-time tracking》2000。

       OpenCV中还实现了一种基于码本的背景差方法,《Real-time foreground–background segmentation using codebook model》2005,可以参考例程bgfg_codebook.cpp,只是这种算法还没有整合进VS架构中,这个扩展工作有待完成。

用户调用接口:

CvFGDetector* cvCreateFGDetectorBase(int type, void *param);

 

3 新目标检测(CvBlobDetector):

       CvBlobDetector在前景掩模的基础上检测新进入场景的Blob(块),子类有两个,分别是CvBlobDetectorSimple和CvBlobDetectorCC,参考文献为《Appearance Models for Occlusion Handling 》2001,检测新目标的基本原则是:当连续多帧图像中包含该连通区域,且具有一致的合理的速度。CvBlobDetectorCC与CvBlobDetectorSimple一个最显著的不同在于引入了 CvObjectDetector,用于检测分离的目标块。

用户调用接口:

CvBlobDetector* cvCreateBlobDetectorSimple();

CvBlobDetector* cvCreateBlobDetectorCC();

 

4 目标跟踪(CvBlobTracker):

       目标跟踪部分的子类众多,在这里不一一列举,给出相应的接口及对应的功能。对MeanShift和粒子滤波感兴趣的读者可参考:《Real-time tracking of non-rigid objects using mean shift》2000,《A Tutorial on Particle Filters for Online Nonlinear Non-Gaussian Bayesian Tracking》2002,《Particle Filters for Positioning, Navigation and Tracking》2002。

用户调用接口:

CvBlobTracker* cvCreateBlobTrackerCC();

连通区域跟踪

CvBlobTracker* cvCreateBlobTrackerCCMSPF();

连通区域跟踪 + 基于MeanShift 粒子滤波的碰撞分析

CvBlobTracker* cvCreateBlobTrackerMS();

Mean shift 算法

CvBlobTracker* cvCreateBlobTrackerMSFG();

基于前景的Mean shift 算法

CvBlobTracker* cvCreateBlobTrackerMSPF();

基于Mean shift 权重的粒子滤波

 

5 轨迹生成(CvBlobTrackGen)

       该接口为CvBlobTrackGen,用于目标跟踪结束后,轨迹数据的保存。子类包括CvBlobTrackGen1和CvBlobTrackGenYML,前者以目标轨迹为单位保存整个轨迹的(x,y,sx,sy)数据为文本格式,后者与视频数据同步,以帧为单位保存当前目标信息为YML格式。

用户调用接口:

CvBlobTrackGen* cvCreateModuleBlobTrackGen1();

CvBlobTrackGen* cvCreateModuleBlobTrackGenYML();

 

6 跟踪后处理(CvBlobTrackPostProc)

       跟踪后处理是一个可选模块,主要用于跟踪过程中目标轨迹的平滑,子类众多,这里给出三个主要的用户接口和说明。

用户调用接口:

CvBlobTrackPostProc* cvCreateModuleBlobTrackPostProcTimeAverRect()

轨迹矩形窗时间平均

CvBlobTrackPostProc* cvCreateModuleBlobTrackPostProcTimeAverExp()

轨迹指数窗时间平均

CvBlobTrackPostProc* cvCreateModuleBlobTrackPostProcKalman()

目标方位、尺寸的Kalman滤波平滑

 

7 轨迹分析(CvBlobTrackAnalysis)

       当某个目标跟踪结束后,会产生一个轨迹,CvBlobTrackAnalysis的子类用于对轨迹进行数据分析。子类众多,这里给出六个主要的用户接口和说明。

用户调用接口:

CvBlobTrackAnalysis* cvCreateModuleBlobTrackAnalysisHistPVS();

5维矢量直方图分析(x,y,vx,vy,state)

CvBlobTrackAnalysis* cvCreateModuleBlobTrackAnalysisHistP();

2维矢量直方图分析(x,y)

CvBlobTrackAnalysis*  cvCreateModuleBlobTrackAnalysisHistPV();

4维矢量直方图分析(x,y,vx,vy)

CvBlobTrackAnalysis* cvCreateModuleBlobTrackAnalysisHistSS();

起始点4维矢量直方图分析(startpos,endpos)

CvBlobTrackAnalysis* cvCreateModuleBlobTrackAnalysisTrackDist();

目标轨迹之间比较距离

CvBlobTrackAnalysis* cvCreateModuleBlobTrackAnalysisIOR();

整合上述多种分析方法

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/127678.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • 小白学电脑计算机的组成,新手学电脑步骤,从零开始学电脑「建议收藏」

    小白学电脑计算机的组成,新手学电脑步骤,从零开始学电脑「建议收藏」如今,手机已经成为我们生活中不可缺少的必需品,各种手机应用软件的层出不穷,使得智能手机占据了互联网的半壁江山,似乎手机无所不能了,平时,很多人觉得一手机在手便可以仗剑走天涯,但当我们走进职场,你就会发现,对于办公而言,手机还是有很大的局限性,掌握电脑知识,熟悉电脑基本操作是胜任工作的必备技能。真是“书到用时方恨少”。今天开始,涛哥就带你走进电脑的世界,让你从电脑小白跃升为办公自动化高手。那么对于一…

  • matlab中wavedec2函数,[转载]小波滤波器–wavedec2函数

    matlab中wavedec2函数,[转载]小波滤波器–wavedec2函数wavedec2函数:1.功能:实现图像(即二维信号)的多层分解.多层,即多尺度.2.格式:[c,s]=wavedec2(X,N,’wname’)[c,s]=wavedec2(X,N,Lo_D,Hi_D)(我不讨论它)3.参数说明:对图像X用wname小波基函数实现N层分解,这里的小波基函数应该根据实际情况选择,具体办法可以:db1、db2、……db45、haar.输出为c,s.c为各层分…

  • pycharm 模板_pycharm基础代码

    pycharm 模板_pycharm基础代码在Pycharm中编码时,当我们输入main再按下Tab键,编辑器会自动出现如下代码块:if__name__==’__main__’:类似地,如果我们有一大段代码要经常重复使用,可以将这段代码设置成一个模版,通过自定义的指令+Tab键直接导入代码。比如我们有如下一段代码:fromPyQt5.Qtimport*classWindow(QWidget):def__init__(self):super().__init__()

  • 生物AI插图免费领取[通俗易懂]

    生物AI插图免费领取[通俗易懂]人靠衣装,佛靠金装,科研成果靠图装。如今做科研不仅只需要会做实验,如何将成果美美地展示出来也是一门需要培养的技能。科研海报、项目PPT、论文插图、通路图……这些直接刺激人感官的展示都可以帮助升华我们的科研内容。之前我们介绍过如何用AdobeIllustrator对图形进行编辑、拼合、排版、简单模式图绘制,并录制了视频,放在了腾讯课堂,http://bioinfo.ke.qq.com,可免费观…

  • TransparentBitmap函数设置透明位图的原理分析

    TransparentBitmap函数设置透明位图的原理分析1、函数的功能:把一张位图设置成透明,不影响背景图的显示,并可改变大小2、函数的思想: (1)以当前的hdc创建5个设备兼容dc(HDC):hMem,hSave,hBack,hObject,hTemp (2)将要透明处理的位图块选入其中一个hTemp,获取宽高,并转换成逻辑点值; (3)创建4个临时位图(HBITMAP):bmMem,bmSave,bmBack,bmObjec

  • dingo「建议收藏」

    dingo「建议收藏」dingo

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号