Tensorflow加载预训练模型和保存模型

使用tensorflow过程中,训练结束后我们需要用到模型文件。有时候,我们可能也需要用到别人训练好的模型,并在这个基础上再次训练。这时候我们需要掌握如何操作这些模型数据。看完本文,相信你一定会有收获!

大家好,又见面了,我是你们的朋友全栈君。

最近看到一个巨牛的人工智能教程,分享一下给大家。教程不仅是零基础,通俗易懂,而且非常风趣幽默,像看小说一样!觉得太牛了,所以分享给大家。平时碎片时间可以当小说看,【点这里可以去膜拜一下大神的“小说”】

使用tensorflow过程中,训练结束后我们需要用到模型文件。有时候,我们可能也需要用到别人训练好的模型,并在这个基础上再次训练。这时候我们需要掌握如何操作这些模型数据。看完本文,相信你一定会有收获!

1 Tensorflow模型文件

我们在checkpoint_dir目录下保存的文件结构如下:

|--checkpoint_dir
|    |--checkpoint
|    |--MyModel.meta
|    |--MyModel.data-00000-of-00001
|    |--MyModel.index

1.1 meta文件

MyModel.meta文件保存的是图结构,meta文件是pb(protocol buffer)格式文件,包含变量、op、集合等。

1.2 ckpt文件

ckpt文件是二进制文件,保存了所有的weights、biases、gradients等变量。在tensorflow 0.11之前,保存在**.ckpt**文件中。0.11后,通过两个文件保存,如:

MyModel.data-00000-of-00001
MyModel.index

1.3 checkpoint文件

我们还可以看,checkpoint_dir目录下还有checkpoint文件,该文件是个文本文件,里面记录了保存的最新的checkpoint文件以及其它checkpoint文件列表。在inference时,可以通过修改这个文件,指定使用哪个model

2 保存Tensorflow模型

tensorflow 提供了tf.train.Saver类来保存模型,值得注意的是,在tensorflow中,变量是存在于Session环境中,也就是说,只有在Session环境下才会存有变量值,因此,保存模型时需要传入session:

saver = tf.train.Saver()
saver.save(sess,"./checkpoint_dir/MyModel")

看一个简单例子:

import tensorflow as tf

w1 = tf.Variable(tf.random_normal(shape=[2]), name='w1')
w2 = tf.Variable(tf.random_normal(shape=[5]), name='w2')
saver = tf.train.Saver()
sess = tf.Session()
sess.run(tf.global_variables_initializer())
saver.save(sess, './checkpoint_dir/MyModel')

执行后,在checkpoint_dir目录下创建模型文件如下:

checkpoint
MyModel.data-00000-of-00001
MyModel.index
MyModel.meta

另外,如果想要在1000次迭代后,再保存模型,只需设置global_step参数即可:

saver.save(sess, './checkpoint_dir/MyModel',global_step=1000)

保存的模型文件名称会在后面加-1000,如下:

checkpoint
MyModel-1000.data-00000-of-00001
MyModel-1000.index
MyModel-1000.meta

在实际训练中,我们可能会在每1000次迭代中保存一次模型数据,但是由于图是不变的,没必要每次都去保存,可以通过如下方式指定不保存图:

saver.save(sess, './checkpoint_dir/MyModel',global_step=step,write_meta_graph=False)

另一种比较实用的是,如果你希望每2小时保存一次模型,并且只保存最近的5个模型文件:

tf.train.Saver(max_to_keep=5, keep_checkpoint_every_n_hours=2)

注意:tensorflow默认只会保存最近的5个模型文件,如果你希望保存更多,可以通过max_to_keep来指定

如果我们不对tf.train.Saver指定任何参数,默认会保存所有变量。如果你不想保存所有变量,而只保存一部分变量,可以通过指定variables/collections。在创建tf.train.Saver实例时,通过将需要保存的变量构造list或者dictionary,传入到Saver中:

import tensorflow as tf
w1 = tf.Variable(tf.random_normal(shape=[2]), name='w1')
w2 = tf.Variable(tf.random_normal(shape=[5]), name='w2')
saver = tf.train.Saver([w1,w2])
sess = tf.Session()
sess.run(tf.global_variables_initializer())
saver.save(sess, './checkpoint_dir/MyModel',global_step=1000)

3 导入训练好的模型

在第1小节中我们介绍过,tensorflow将图和变量数据分开保存为不同的文件。因此,在导入模型时,也要分为2步:构造网络图和加载参数

3.1 构造网络图

一个比较笨的方法是,手敲代码,实现跟模型一模一样的图结构。其实,我们既然已经保存了图,那就没必要在去手写一次图结构代码。

saver=tf.train.import_meta_graph('./checkpoint_dir/MyModel-1000.meta')

上面一行代码,就把图加载进来了

3.2 加载参数

仅仅有图并没有用,更重要的是,我们需要前面训练好的模型参数(即weights、biases等),本文第2节提到过,变量值需要依赖于Session,因此在加载参数时,先要构造好Session:

import tensorflow as tf
with tf.Session() as sess:
  new_saver = tf.train.import_meta_graph('./checkpoint_dir/MyModel-1000.meta')
  new_saver.restore(sess, tf.train.latest_checkpoint('./checkpoint_dir'))

此时,W1和W2加载进了图,并且可以被访问:

import tensorflow as tf
with tf.Session() as sess:    
    saver = tf.train.import_meta_graph('./checkpoint_dir/MyModel-1000.meta')
    saver.restore(sess,tf.train.latest_checkpoint('./checkpoint_dir'))
    print(sess.run('w1:0'))
##Model has been restored. Above statement will print the saved value

执行后,打印如下:

[ 0.51480412 -0.56989086]

4 使用恢复的模型

前面我们理解了如何保存和恢复模型,很多时候,我们希望使用一些已经训练好的模型,如prediction、fine-tuning以及进一步训练等。这时候,我们可能需要获取训练好的模型中的一些中间结果值,可以通过graph.get_tensor_by_name('w1:0')来获取,注意w1:0是tensor的name。

假设我们有一个简单的网络模型,代码如下:

import tensorflow as tf


w1 = tf.placeholder("float", name="w1")
w2 = tf.placeholder("float", name="w2")
b1= tf.Variable(2.0,name="bias") 

#定义一个op,用于后面恢复
w3 = tf.add(w1,w2)
w4 = tf.multiply(w3,b1,name="op_to_restore")
sess = tf.Session()
sess.run(tf.global_variables_initializer())

#创建一个Saver对象,用于保存所有变量
saver = tf.train.Saver()

#通过传入数据,执行op
print(sess.run(w4,feed_dict ={ 
   w1:4,w2:8}))
#打印 24.0 ==>(w1+w2)*b1

#现在保存模型
saver.save(sess, './checkpoint_dir/MyModel',global_step=1000)

接下来我们使用graph.get_tensor_by_name()方法来操纵这个保存的模型。

import tensorflow as tf

sess=tf.Session()
#先加载图和参数变量
saver = tf.train.import_meta_graph('./checkpoint_dir/MyModel-1000.meta')
saver.restore(sess, tf.train.latest_checkpoint('./checkpoint_dir'))


# 访问placeholders变量,并且创建feed-dict来作为placeholders的新值
graph = tf.get_default_graph()
w1 = graph.get_tensor_by_name("w1:0")
w2 = graph.get_tensor_by_name("w2:0")
feed_dict ={ 
   w1:13.0,w2:17.0}

#接下来,访问你想要执行的op
op_to_restore = graph.get_tensor_by_name("op_to_restore:0")

print(sess.run(op_to_restore,feed_dict))
#打印结果为60.0==>(13+17)*2

注意:保存模型时,只会保存变量的值,placeholder里面的值不会被保存

如果你不仅仅是用训练好的模型,还要加入一些op,或者说加入一些layers并训练新的模型,可以通过一个简单例子来看如何操作:

import tensorflow as tf

sess = tf.Session()
# 先加载图和变量
saver = tf.train.import_meta_graph('my_test_model-1000.meta')
saver.restore(sess, tf.train.latest_checkpoint('./'))

# 访问placeholders变量,并且创建feed-dict来作为placeholders的新值
graph = tf.get_default_graph()
w1 = graph.get_tensor_by_name("w1:0")
w2 = graph.get_tensor_by_name("w2:0")
feed_dict = { 
   w1: 13.0, w2: 17.0}

#接下来,访问你想要执行的op
op_to_restore = graph.get_tensor_by_name("op_to_restore:0")

# 在当前图中能够加入op
add_on_op = tf.multiply(op_to_restore, 2)

print (sess.run(add_on_op, feed_dict))
# 打印120.0==>(13+17)*2*2

如果只想恢复图的一部分,并且再加入其它的op用于fine-tuning。只需通过graph.get_tensor_by_name()方法获取需要的op,并且在此基础上建立图,看一个简单例子,假设我们需要在训练好的VGG网络使用图,并且修改最后一层,将输出改为2,用于fine-tuning新数据:

......
......
saver = tf.train.import_meta_graph('vgg.meta')
# 访问图
graph = tf.get_default_graph() 
 
#访问用于fine-tuning的output
fc7= graph.get_tensor_by_name('fc7:0')
 
#如果你想修改最后一层梯度,需要如下
fc7 = tf.stop_gradient(fc7) # It's an identity function
fc7_shape= fc7.get_shape().as_list()

new_outputs=2
weights = tf.Variable(tf.truncated_normal([fc7_shape[3], num_outputs], stddev=0.05))
biases = tf.Variable(tf.constant(0.05, shape=[num_outputs]))
output = tf.matmul(fc7, weights) + biases
pred = tf.nn.softmax(output)

# Now, you run this with fine-tuning data in sess.run()

Reference

http://cv-tricks.com/tensorflow-tutorial/save-restore-tensorflow-models-quick-complete-tutorial/

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/127292.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • 数据库的存储过程_数据库的存储过程语句

    数据库的存储过程_数据库的存储过程语句一、存储过程与函数的区别:1.一般来说,存储过程实现的功能要复杂一点,而函数的实现的功能针对性比较强。2.对于存储过程来说可以返回参数(output),而函数只能返回值或者表对象。3.存储过程一

  • 走进webpack(2)–第三方框架(类库)的引入及抽离

    正文之前,由于这是一个系列的文章,可能第一次看到的看官老爷们会觉得突兀,如果你是webpack新手,我建议你先从前几篇文章看起,如果你对webpack有一些了解,也希望可以在github上下载代码,对

  • java反射

    java反射

    2021年11月12日
  • malloc函数具体解释

    malloc函数具体解释

  • 数据库锁机制[通俗易懂]

    数据库锁机制[通俗易懂]1 前言数据库大并发操作要考虑死锁和锁的性能问题。看到网上大多语焉不详(尤其更新锁),所以这里做个简明解释,为下面描述方便,这里用T1代表一个数据库执行请求,T2代表另一个请求,也可以理解为T1为一个线程,T2为另一个线程。T3,T4以此类推。下面以SQLServer(2005)为例。2 锁的种类共享锁(Sharedlock)。例1:——–

  • 数学建模算法学习——各类模型算法汇总[通俗易懂]

    数学建模算法学习——各类模型算法汇总[通俗易懂]相关模型解决的问题数据分析类算法一览100个经典动态规划方程优化问题线性规划简介:线性规划的目标函数可以是求最大值,也可以是求最小值,约束条件的不等号可以是小于号也可以是大于号。为了避免这种形式多样性带来的不便,Matlab中规定线性规划的标准形式为其中c和x为n维列向量,A、Aeq为适当维数的矩阵,b、beq为适当维数的列向量。代码实现…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号