UNet详解(附图文和代码实现)

卷积神经网络被大规模的应用在分类任务中,输出的结果是整个图像的类标签。但是UNet是像素级分类,输出的则是每个像素点的类别,且不同类别的像素会显示不同颜色,UNet常常用在生物医学图像上,而该任务中图片数据往往较少。所以,Ciresan等人训练了一个卷积神经网络,用滑动窗口提供像素的周围区域(patch)作为输入来预测每个像素的类标签。这个网络有两个优点:(1)输出结果可以定位出目标类别的位置;(2)由于输入的训练数据是patches,这样就相当于进行了数据增强,从而解决了生物医学图像数量少的问题。但是,

大家好,又见面了,我是你们的朋友全栈君。

卷积神经网络被大规模的应用在分类任务中,输出的结果是整个图像的类标签。但是UNet是像素级分类,输出的则是每个像素点的类别,且不同类别的像素会显示不同颜色,UNet常常用在生物医学图像上,而该任务中图片数据往往较少。所以,Ciresan等人训练了一个卷积神经网络,用滑动窗口提供像素的周围区域(patch)作为输入来预测每个像素的类标签。这个网络有两个优点:(1)输出结果可以定位出目标类别的位置;(2)由于输入的训练数据是patches,这样就相当于进行了数据增强,从而解决了生物医学图像数量少的问题。

但是,采用该方法的神经网络也有两个很明显的缺点:(1)它很慢,因为这个网络必须训练每个patch,并且因为patch之间的重叠有很多冗余,这样会导致同样特征被多次训练,造成资源的浪费,导致训练时间的加长且效率也会有所降低,也有人会问神经网络经过多次训练这个特征后,会对这个特征的印象加深,从而准确率也会上升,但是举个例子一个图片复制50张,用这50张图片去训练网络,虽说数据集增大了,可是导致的后果是神经网络会出现过拟合,也就是说神经网络对训练图片很熟悉,可是换了一张图片,神经网络就有可能分辨不出来了。(2)定位准确性和获取上下文信息不可兼得,大的patches需要更多的max-pooling,这样会减少定位准确性,因为最大池化会丢失目标像素和周围像素之间的空间关系,而小patches只能看到很小的局部信息,包含的背景信息不够。

UNet主要贡献是在U型结构上,该结构可以使它使用更少的训练图片的同时,且分割的准确度也不会差,UNet的网络结构如下图:

在这里插入图片描述
(1)UNet采用全卷积神经网络。
(2)左边网络为特征提取网络:使用conv和pooling
(3)右边网络为特征融合网络:使用上采样产生的特征图与左侧特征图进行concatenate操作。(pooling层会丢失图像信息和降低图像分辨率且是永久性的,对于图像分割任务有一些影响,对图像分类任务的影响不大,为什么要做上采样呢?上采样可以让包含高级抽象特征低分辨率图片在保留高级抽象特征的同时变为高分辨率,然后再与左边低级表层特征高分辨率图片进行concatenate操作)
(4)最后再经过两次卷积操作,生成特征图,再用两个卷积核大小为1*1的卷积做分类得到最后的两张heatmap,例如第一张表示第一类的得分,第二张表示第二类的得分heatmap,然后作为softmax函数的输入,算出概率比较大的softmax,然后再进行loss,反向传播计算。

Unet模型的代码实现(基于keras):

def get_unet():
    inputs = Input((img_rows, img_cols, 1))
    conv1 = Conv2D(32, (3, 3), activation='relu', padding='same')(inputs)
    conv1 = Conv2D(32, (3, 3), activation='relu', padding='same')(conv1)
    pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
    # pool1 = Dropout(0.25)(pool1)
    # pool1 = BatchNormalization()(pool1)

    conv2 = Conv2D(64, (3, 3), activation='relu', padding='same')(pool1)
    conv2 = Conv2D(64, (3, 3), activation='relu', padding='same')(conv2)
    pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
    # pool2 = Dropout(0.5)(pool2)
    # pool2 = BatchNormalization()(pool2)

    conv3 = Conv2D(128, (3, 3), activation='relu', padding='same')(pool2)
    conv3 = Conv2D(128, (3, 3), activation='relu', padding='same')(conv3)
    pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
    # pool3 = Dropout(0.5)(pool3)
    # pool3 = BatchNormalization()(pool3)

    conv4 = Conv2D(256, (3, 3), activation='relu', padding='same')(pool3)
    conv4 = Conv2D(256, (3, 3), activation='relu', padding='same')(conv4)
    pool4 = MaxPooling2D(pool_size=(2, 2))(conv4)
    # pool4 = Dropout(0.5)(pool4)
    # pool4 = BatchNormalization()(pool4)

    conv5 = Conv2D(512, (3, 3), activation='relu', padding='same')(pool4)
    conv5 = Conv2D(512, (3, 3), activation='relu', padding='same')(conv5)

    up6 = concatenate([Conv2DTranspose(256, (2, 2), strides=(
        2, 2), padding='same')(conv5), conv4], axis=3)
    # up6 = Dropout(0.5)(up6)
    # up6 = BatchNormalization()(up6)
    conv6 = Conv2D(256, (3, 3), activation='relu', padding='same')(up6)
    conv6 = Conv2D(256, (3, 3), activation='relu', padding='same')(conv6)

    up7 = concatenate([Conv2DTranspose(128, (2, 2), strides=(
        2, 2), padding='same')(conv6), conv3], axis=3)
    # up7 = Dropout(0.5)(up7)
    # up7 = BatchNormalization()(up7)
    conv7 = Conv2D(128, (3, 3), activation='relu', padding='same')(up7)
    conv7 = Conv2D(128, (3, 3), activation='relu', padding='same')(conv7)

    up8 = concatenate([Conv2DTranspose(64, (2, 2), strides=(
        2, 2), padding='same')(conv7), conv2], axis=3)
    # up8 = Dropout(0.5)(up8)
    # up8 = BatchNormalization()(up8)
    conv8 = Conv2D(64, (3, 3), activation='relu', padding='same')(up8)
    conv8 = Conv2D(64, (3, 3), activation='relu', padding='same')(conv8)

    up9 = concatenate([Conv2DTranspose(32, (2, 2), strides=(
        2, 2), padding='same')(conv8), conv1], axis=3)
    # up9 = Dropout(0.5)(up9)
    # up9 = BatchNormalization()(up9)
    conv9 = Conv2D(32, (3, 3), activation='relu', padding='same')(up9)
    conv9 = Conv2D(32, (3, 3), activation='relu', padding='same')(conv9)

    # conv9 = Dropout(0.5)(conv9)

    conv10 = Conv2D(1, (1, 1), activation='sigmoid')(conv9)

    model = Model(inputs=[inputs], outputs=[conv10])

    model.compile(optimizer=Adam(lr=1e-5),
                  loss=dice_coef_loss, metrics=[dice_coef])

    return model
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/124855.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • 线性内插interp1函数用法

    线性内插interp1函数用法线性内插是假设在二个已知数据中的变化为线性关系,因此可由已知二点的座标(a,b)去计算通过这二点的斜线,公式如下:其中 a 在上式的 b 点即是代表要内插的点,f(b) 则是要计算的内插函数值。下图即是一个以二种内插法的比较\pcxfile[12cm,5cm]{fig9_1.pcx}\caption{线性式与spline函数的曲线契合}线性内插是最简单的内插方

  • Linux 环境变量配置汇总

    Linux 环境变量配置汇总Linux环境变量配置汇总01、Linux环境变量配置02、Linux读取环境变量03、Linux环境变量配置方法一:exportPATH或者把PATH放在前面04、Linux环境变量配置方法二:vim~/.bashrc在最后一行加上05、Linux环境变量配置方法三:vim~/.bash_profile06、Linux环境变量配置方法四:vim/etc/bashrc07、Linux环境变量配置方法五:vim/etc/profile在最后一行加上08、Linux环境变量配置方法六:vim/et

  • PP图和QQ图

    一.QQ图分位数图示法(QuantileQuantilePlot,简称Q-Q图)统计学里Q-Q图(Q代表分位数)是一个概率图,用图形的方式比较两个概率分布,把他们的两个分位数放在一起比较。首先选好分位数间隔。图上的点(x,y)反映出其中一个第二个分布(y坐标)的分位数和与之对应的第一分布(x坐标)的相同分位数。因此,这条线是一条以分位数间隔为参数的曲线。如果两个分布相似,则该Q-Q图…

  • DHCP协议浅析

    DHCP协议浅析定义:动态主机配置协议,主要在一些大型局域网络环境中,集中管理和分配IP地址,提升地址的使用效率。DHCP协议采用CLIENT-SERVER方式实现,而且DHCP协议是基于UDP层之上的应用,DHCPCLIENT将采用端口号68,DHCPSERVER采用端口号67进行交互。DHCP的三种分配IP机制:自动分配方式:DHCP服务器为主机指定一个永久性的IP地址。客户端一旦第一次成功租用IP过后,后面即可永久性使用次IP地址。 动态分配方式:DHCP服务器为主机指定一个具有时间期限的IP地址…

  • 关于事务的隔离级别和处理机制的理解

    关于事务的隔离级别和处理机制的理解

    2021年11月25日
  • matlab画图,添加图名,坐标轴名,曲线名称(图例)[通俗易懂]

    matlab画图,添加图名,坐标轴名,曲线名称(图例)[通俗易懂]matlab加图名,坐标轴名,图例

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号