五大常用算法之一:分治算法

一、基本概念在计算机科学中,分治法是一种很重要的算法。字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求

大家好,又见面了,我是全栈君,今天给大家准备了Idea注册码。

一、基本概念

   在计算机科学中,分治法是一种很重要的算法。字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。这个技巧是很多高效算法的基础,如排序算法(快速排序,归并排序),傅立叶变换(快速傅立叶变换)……

    任何一个可以用计算机求解的问题所需的计算时间都与其规模有关。问题的规模越小,越容易直接求解,解题所需的计算时间也越少。例如,对于n个元素的排序问题,当n=1时,不需任何计算。n=2时,只要作一次比较即可排好序。n=3时只要作3次比较即可,…。而当n较大时,问题就不那么容易处理了。要想直接解决一个规模较大的问题,有时是相当困难的。http://hovertree.com/


二、基本思想及策略

   分治法的设计思想是:将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。

   分治策略是:对于一个规模为n的问题,若该问题可以容易地解决(比如说规模n较小)则直接解决,否则将其分解为k个规模较小的子问题,这些子问题互相独立且与原问题形式相同,递归地解这些子问题,然后将各子问题的解合并得到原问题的解。这种算法设计策略叫做分治法。

   如果原问题可分割成k个子问题,1<k≤n,且这些子问题都可解并可利用这些子问题的解求出原问题的解,那么这种分治法就是可行的。由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。这自然导致递归过程的产生。分治与递归像一对孪生兄弟,经常同时应用在算法设计之中,并由此产生许多高效算法。


三、分治法适用的情况

    分治法所能解决的问题一般具有以下几个特征:

    1) 该问题的规模缩小到一定的程度就可以容易地解决

    2) 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质。

    3) 利用该问题分解出的子问题的解可以合并为该问题的解;

    4) 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。

第一条特征是绝大多数问题都可以满足的,因为问题的计算复杂性一般是随着问题规模的增加而增加;

第二条特征是应用分治法的前提它也是大多数问题可以满足的,此特征反映了递归思想的应用;、

第三条特征是关键,能否利用分治法完全取决于问题是否具有第三条特征,如果具备了第一条和第二条特征,而不具备第三条特征,则可以考虑用贪心法或动态规划法

第四条特征涉及到分治法的效率,如果各子问题是不独立的则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然可用分治法,但一般用动态规划法较好


四、分治法的基本步骤

分治法在每一层递归上都有三个步骤:

    step1 分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题;

    step2 解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题

    step3 合并:将各个子问题的解合并为原问题的解。

它的一般的算法设计模式如下:

    Divide-and-Conquer(P)

    1. if |P|≤n0

    2. then return(ADHOC(P))

    3. 将P分解为较小的子问题 P1 ,P2 ,…,Pk

    4. for i←1 to k

    5. do yi ← Divide-and-Conquer(Pi) △ 递归解决Pi

    6. T ← MERGE(y1,y2,…,yk) △ 合并子问题

    7. return(T)

    其中|P|表示问题P的规模;n0为一阈值,表示当问题P的规模不超过n0时,问题已容易直接解出,不必再继续分解。ADHOC(P)是该分治法中的基本子算法,用于直接解小规模的问题P。因此,当P的规模不超过n0时直接用算法ADHOC(P)求解。算法MERGE(y1,y2,…,yk)是该分治法中的合并子算法,用于将P的子问题P1 ,P2 ,…,Pk的相应的解y1,y2,…,yk合并为P的解。


五、分治法的复杂性分析

    一个分治法将规模为n的问题分成k个规模为n/m的子问题去解。设分解阀值n0=1,且adhoc解规模为1的问题耗费1个单位时间。再设将原问题分解为k个子问题以及用merge将k个子问题的解合并为原问题的解需用f(n)个单位时间。用T(n)表示该分治法解规模为|P|=n的问题所需的计算时间,则有:

 T(n)= k T(n/m)+f(n)

    通过迭代法求得方程的解:

    递归方程及其解只给出n等于m的方幂时T(n)的值,但是如果认为T(n)足够平滑,那么由n等于m的方幂时T(n)的值可以估计T(n)的增长速度。通常假定T(n)是单调上升的,从而当                  mi≤n<mi+1时,T(mi)≤T(n)<T(mi+1)。 


六、可使用分治法求解的一些经典问题
 
 (1)二分搜索
(2)大整数乘法
 (3)Strassen矩阵乘法
(4)棋盘覆盖
(5)合并排序
(6)快速排序
(7)线性时间选择

(8)最接近点对问题
(9)循环赛日程表
(10)汉诺塔

七、依据分治法设计程序时的思维过程
 
    实际上就是类似于数学归纳法,找到解决本问题的求解方程公式,然后根据方程公式设计递归程序。
1、一定是先找到最小问题规模时的求解方法
2、然后考虑随着问题规模增大时的求解方法
3、找到求解的递归函数式后(各种规模或因子),设计递归程序即可。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/120450.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • D3DXMatrixMultiply 函数

    D3DXMatrixMultiply 函数

  • CSRF攻击与防御(写得非常好)「建议收藏」

    转载地址:http://www.phpddt.com/reprint/csrf.htmlCSRF概念:CSRF跨站点请求伪造(Cross—SiteRequestForgery),跟XSS攻击一样,存在巨大的危害性,你可以这样来理解:攻击者盗用了你的身份,以你的名义发送恶意请求,对服务器来说这个请求是完全合法的,但是却完成了攻击者所期望的一个操作,

  • 怎样将生成的xml文件进行格式化

    怎样将生成的xml文件进行格式化最近有在项目中生成xml文件,但是生成之后的xml文件打开之后,是一坨,看起来真的不美观,要是能够格式化输出来就好了。这里说明一下,我使用DOM4J的方式生成的xmlpublicstaticv

  • 解决H5页面在微信浏览器中打开 input file 在安卓上没有拍照选项

    解决H5页面在微信浏览器中打开 input file 在安卓上没有拍照选项有时候我们会在微信公众号里开发会遇到上传图片的功能,当你写&lt;inputtype="file"&gt;的时候,在IOS上可以成功调起拍照和图库两块,在安卓手机上只能调取图库而没有拍照功能,解决办法:给input加上accept属性&lt;inputtype="file"accept="image/*"/&gt; //调用相机,图片或者相册(两者都行)加上了capture=…

  • 【信息学奥赛一本通】题解目录「建议收藏」

    【信息学奥赛一本通】题解目录「建议收藏」OJ网站:点击这里【语言及算法基础篇】第一部分:C++语言第一章:C++语言入门Hello,World!(信息学奥赛一本通-T1001):点击这里 输出第二个整数(信息学奥赛一本通-T1002):点击这里 对齐输出(信息学奥赛一本通-T1003):点击这里 字符三角形(信息学奥赛一本通-T1004):点击这里 地球人口承载力估计(信息学奥赛一本通-T1005):点击…

  • 浅析Java多态_JAVA多态

    浅析Java多态_JAVA多态Java多态今天来谈谈Java中的多态,作为面向对象的一大特性,它的重要性不必多说,相比其他两特性(继承、封装)从字面上看就有点不易读懂,多种态度还是有多变态?官解官方解释:多态是同一个行为具有多个不同表现形式或形态的能力。多态就是同一个接口,使用不同的实例而执行不同操作。简单理解就是同一方法在不同类中有不同实现(继承关系上),在或者就是父类的引用指向子类对象;在这里我附上官方的图解:如图所示:一台打印机,都有着打印的功能,但是不同的打印机在不同的场景或者不同的需求上,可以打印出不同的

    2022年10月28日

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号