huffman编码——原理与实现

huffman编码——原理与实现

大家好,又见面了,我是全栈君,祝每个程序员都可以多学几门语言。


哈夫曼算法原理


Wikipedia上面说的非常清楚了,这里我就不再赘述,直接贴过来了。


1952年, David A. Huffman提出了一个不同的算法,这个算法能够为不论什么的可能性提供出一个理想的树。香农-范诺编码(Shanno-Fano)是从树的根节点到叶子节点所进行的的编码,哈夫曼编码算法却是从相反的方向,暨从叶子节点到根节点的方向编码的。

  1. 为每一个符号建立一个叶子节点,并加上其对应的发生频率
  2. 当有一个以上的节点存在时,进行下列循环:
    1. 把这些节点作为带权值的二叉树的根节点,左右子树为空
    2. 选择两棵根结点权值最小的树作为左右子树构造一棵新的二叉树,且至新的二叉树的根结点的权值为其左右子树上根结点的权值之和。
    3. 把权值最小的两个根节点移除
    4. 将新的二叉树添�队列中.
  3. 最后剩下的节点暨为根节点,此时二叉树已经完毕。

演示样例


huffman编码——原理与实现

Huffman Algorithm

huffman编码——原理与实现


符号 A B C D E
计数 15 7 6 6 5
概率 0.38461538 0.17948718 0.15384615 0.15384615 0.12820513

在这样的情况下,D,E的最低频率和分配分别为0和1,分组结合概率的0.28205128。如今最低的一双是B和C,所以他们就分配0和1组合结合概率的0.33333333在一起。这使得BC和DE所以0和1的前面加上他们的代码和它们结合的概率最低。然后离开仅仅是一个和BCDE,当中有前缀分别为0和1,然后结合。这使我们与一个单一的节点,我们的算法是完整的。


可得A代码的代码长度是1比特,其余字符是3比特。

字符 A B C D E
代码 0 100 101 110 111

   
Entropy:
huffman编码——原理与实现




Pseudo-code

 1:  begin 2:     count frequencies of single characters (source units) 3:     output(frequencies using Fibonacci Codes of degree 2) 4:     sort them to non-decreasing sequence 5:     create a leaf node (character, frequency c, left son = NULL, right son = NULL)  6:  	   of the tree for each character and put nodes into queue F 7:     while (|F|>=2) do  8:      begin 9:        pop the first two nodes (u1, u2) with the lowest 10:  	      frequencies from sorted queue11:        create a node evaluated with sum of the chosen units, 12:  	      successors are chosen units (eps, c(u1)+c(u2), u1, u2)13:        insert new node into queue14:      end15:     node evaluate with way from root to leaf node (left son 1, right son 0)16:     create output from coded intput characters17:  end




哈夫曼算法实现



实现的时候我们用vector<bool>记录每一个char的编码;用map<char,vector<bool>>表示整个字典;
就得到了以下的代码(以下有两个,一对一错):

先放出来这个错的,以示警戒

/************************************************************************/
/*	File Name: Huffman.cpp
*		@Function: Lossless Compression
		@Author: Sophia Zhang
		@Create Time: 2012-9-26 10:40
		@Last Modify: 2012-9-26 11:10
*/
/************************************************************************/

#include"iostream"
#include "queue"
#include "map"
#include "string"
#include "iterator"
#include "vector"
#include "algorithm"
using namespace std;

#define NChar 8	//suppose use at most 8 bits to describe all symbols
#define Nsymbols 1<<NChar	//can describe 256 symbols totally (include a-z, A-Z)
typedef vector<bool> Huff_code;//8 bit code of one char
map<char,Huff_code> Huff_Dic;	//huffman coding dictionary

class HTree
{
public :
	HTree* left;
	HTree* right;
	char ch;
	int weight;

	HTree(){left = right = NULL; weight=0;}
	HTree(HTree* l,HTree* r,int w,char c){left = l;	right = r;	weight=w;	ch=c;}
	~HTree(){delete left; delete right;}
	int Getweight(){return weight?weight:left->weight+right->weight;}
	bool Isleaf(){return !left && !right; }
	bool operator < (const HTree tr) const
	{
		return tr.weight < weight;
	}
};

HTree* BuildTree(int *frequency)
{
	priority_queue<HTree*> QTree;

	//1st level add characters
	for (int i=0;i<Nsymbols;i++)
	{
		if(frequency[i])
			QTree.push(new HTree(NULL,NULL,frequency[i],(char)i));			
	}

	//build
	while (QTree.size()>1)
	{
		HTree* lc  = QTree.top();
		QTree.pop();
		HTree* rc = QTree.top();
		QTree.pop();

		HTree* parent = new HTree(lc,rc,parent->Getweight(),(char)256);
		QTree.push(parent);
	}
	//return tree root
	return QTree.top();
}

void Huffman_Coding(HTree* root, Huff_code& curcode)
{
	if(root->Isleaf())
	{
		Huff_Dic[root->ch] = curcode;
		return;
	}
	Huff_code& lcode = curcode;
	Huff_code& rcode = curcode;
	lcode.push_back(false);
	rcode.push_back(true);

	Huffman_Coding(root->left,lcode);
	Huffman_Coding(root->right,rcode);
}

int main()
{
	int freq[Nsymbols] = {0};
	char *str = "this is the string need to be compressed";

	//statistic character frequency
	while (*str!='\0')
		freq[*str++]++;

	//build tree
	HTree* r = BuildTree(freq);
	Huff_code nullcode;
	nullcode.clear();
	Huffman_Coding(r,nullcode);

	for(map<char,Huff_code>::iterator it = Huff_Dic.begin(); it != Huff_Dic.end(); it++)
	{
		cout<<(*it).first<<'\t';
		Huff_code vec_code = (*it).second;
		for (vector<bool>::iterator vit = vec_code.begin(); vit!=vec_code.end();vit++)
		{
			cout<<(*vit)<<endl;
		}
	}
}



上面这段代码,我执行出来不正确。在调试的时候发现了一个问题,就是QTree优先队列中的排序出了问题,说来也是,上面的代码中,我重载小于号是对HTree object做的;而实际上我建树时用的是指针,那么优先级队列中元素为指针时该怎么办呢?

那我们将friend bool operator >(Node node1,Node node2)改动为friend bool operator >(Node* node1,Node* node2),也就是传递的是Node的指针行不行呢?


答案是不能够,由于依据c++primer中重载操作符中讲的“程序猿仅仅能为类类型或枚举类型的操作数定义重载操作符,在把操作符声明为类的成员时,至少有一个类或枚举类型的參数依照值或者引用的方式传递”,也就是说friend bool operator >(Node* node1,Node* node2)形參中都是指针类型的是不能够的。我们仅仅能再建一个类,用当中的重载()操作符作为优先队列的比較函数。




就得到了以下正确的代码:


/************************************************************************/
/*	File Name: Huffman.cpp
*		@Function: Lossless Compression
		@Author: Sophia Zhang
		@Create Time: 2012-9-26 10:40
		@Last Modify: 2012-9-26 12:10
*/
/************************************************************************/

#include"iostream"
#include "queue"
#include "map"
#include "string"
#include "iterator"
#include "vector"
#include "algorithm"
using namespace std;

#define NChar 8	//suppose use 8 bits to describe all symbols
#define Nsymbols 1<<NChar	//can describe 256 symbols totally (include a-z, A-Z)
typedef vector<bool> Huff_code;//8 bit code of one char
map<char,Huff_code> Huff_Dic;	//huffman coding dictionary

/************************************************************************/
/* Tree Class elements:
*2 child trees
*character and frequency of current node
*/
/************************************************************************/
class HTree
{
public :
	HTree* left;
	HTree* right;
	char ch;
	int weight;

	HTree(){left = right = NULL; weight=0;ch ='\0';}
	HTree(HTree* l,HTree* r,int w,char c){left = l;	right = r;	weight=w;	ch=c;}
	~HTree(){delete left; delete right;}
	bool Isleaf(){return !left && !right; }
};

/************************************************************************/
/* prepare for pointer sorting*/
/*because we cannot use overloading in class HTree directly*/
/************************************************************************/
class Compare_tree
{
public:
	bool operator () (HTree* t1, HTree* t2)
	{
		return t1->weight> t2->weight;
	}
};

/************************************************************************/
/* use priority queue to build huffman tree*/
/************************************************************************/
HTree* BuildTree(int *frequency)
{
	priority_queue<HTree*,vector<HTree*>,Compare_tree> QTree;

	//1st level add characters
	for (int i=0;i<Nsymbols;i++)
	{
		if(frequency[i])
			QTree.push(new HTree(NULL,NULL,frequency[i],(char)i));			
	}

	//build
	while (QTree.size()>1)
	{
		HTree* lc  = QTree.top();
		QTree.pop();
		HTree* rc = QTree.top();
		QTree.pop();

		HTree* parent = new HTree(lc,rc,lc->weight+rc->weight,(char)256);
		QTree.push(parent);
	}
	//return tree root
	return QTree.top();
}

/************************************************************************/
/* Give Huffman Coding to the Huffman Tree*/
/************************************************************************/
void Huffman_Coding(HTree* root, Huff_code& curcode)
{
	if(root->Isleaf())
	{
		Huff_Dic[root->ch] = curcode;
		return;
	}
	Huff_code lcode = curcode;
	Huff_code rcode = curcode;
	lcode.push_back(false);
	rcode.push_back(true);

	Huffman_Coding(root->left,lcode);
	Huffman_Coding(root->right,rcode);
}

int main()
{
	int freq[Nsymbols] = {0};
	char *str = "this is the string need to be compressed";

	//statistic character frequency
	while (*str!='\0')
		freq[*str++]++;

	//build tree
	HTree* r = BuildTree(freq);
	Huff_code nullcode;
	nullcode.clear();
	Huffman_Coding(r,nullcode);

	for(map<char,Huff_code>::iterator it = Huff_Dic.begin(); it != Huff_Dic.end(); it++)
	{
		cout<<(*it).first<<'\t';
		std::copy(it->second.begin(),it->second.end(),std::ostream_iterator<bool>(cout));
		cout<<endl;
	}
}



huffman编码——原理与实现


Reference:






关于Compression很多其它的学习资料将继续更新,敬请关注本博客和新浪微博
Sophia_qing









版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/118423.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • CentOS7使用iptables防火墙开放端口

    CentOS7使用iptables防火墙开放端口

    2021年10月29日
  • java中数组转列表_Java数组转list

    java中数组转列表_Java数组转list1.javajdk提供的Arrays.asList(T…a)方法publicstaticvoidmain(String[]args){String[]strArray={“a”,”b”,”c”};List<String>strList=Arrays.asList(strArray);Sy…

  • datagrip2021 mac激活码【2021.10最新】

    (datagrip2021 mac激活码)最近有小伙伴私信我,问我这边有没有免费的intellijIdea的激活码,然后我将全栈君台教程分享给他了。激活成功之后他一直表示感谢,哈哈~IntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,下面是详细链接哦~https://javaforall.cn/100143.html14…

  • 什么是覆盖索引_数据库为什么一定要覆盖索引

    什么是覆盖索引_数据库为什么一定要覆盖索引在了解覆盖索引之前我们先大概了解一下什么是聚集索引(主键索引)和辅助索引(二级索引)聚集索引(主键索引):聚集索引就是按照每张表的主键构造一颗B+树,同时叶子节点中存放的即为整张表的记录数据。聚集索引的叶子节点称为数据页,聚集索引的这个特性决定了索引组织表中的数据也是索引的一部分。辅助索引(二级索引):非主键索引,叶子节点=键值+书签。Innodb存储引擎的书签就是相应行数据的主键索引值。…

  • XMind思维导图快捷键[通俗易懂]

    XMind思维导图快捷键[通俗易懂]快捷键的使用会让我们的工作效率大大的提高,XMind做为思维导图中软件的佼佼者,让众多办公的人们体会到了便捷;这么好使的一个工具,它的快捷键还不快快的学习/使用起来吗?需要更多教程,微信扫码即可XMind快捷键汇总先来张比较全的大图然后我们再来分解快捷键的大图,顺序按照XMind顶部的菜单顺序。一、文件【注】Command为Mac系统,若为Windows系统换为Ctrl即可,例如:Command+C/V(Mac)=>Ctrl+C/V…

  • 阿里技术专家详解 Dubbo 实践,演进及未来规划

    阿里技术专家详解 Dubbo 实践,演进及未来规划

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号