蚁群算法 matlab程序(已执行)

蚁群算法 matlab程序(已执行)

大家好,又见面了,我是全栈君,今天给大家准备了Idea注册码。

蚁群算法 matlab程序(已执行)此处内容已经被作者隐藏,请输入验证码查看内容
验证码:
请关注本站微信公众号,回复“”,获取验证码。在微信里搜索“”或者“”或者微信扫描右侧二维码都可以关注本站微信公众号。

下面是解放军信息project大学一个老师编的matlab程序,请尊重原作者劳动,引用时请注明出处。

我经过改动添加了凝视,已经执行过,无误,

function [R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP(C,NC_max,m,Alpha,Beta,Rho,Q)

%%————————————————————————-

%% 主要符号说明

%% C n个城市的坐标,n×2的矩阵

%% NC_max 最大迭代次数

%% m 蚂蚁个数

%% Alpha 表征信息素重要程度的參数

%% Beta 表征启示式因子重要程度的參数

%% Rho 信息素蒸发系数

%% Q 信息素添加强度系数

%% R_best 各代最佳路线

%% L_best 各代最佳路线的长度

%%=========================================================================

%%第一步:变量初始化

n=size(C,1);%n表示问题的规模(城市个数)

D=zeros(n,n);%D表示全然图的赋权邻接矩阵

for i=1:n

for j=1:n

if i~=j

D(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5;

else

D(i,j)=eps;      %i=j时不计算,应该为0,但后面的启示因子要取倒数,用eps(浮点相对精度)表示

end

D(j,i)=D(i,j);   %对称矩阵

end

end

Eta=1./D;          %Eta为启示因子,这里设为距离的倒数

Tau=ones(n,n);     %Tau为信息素矩阵

Tabu=zeros(m,n);   %存储并记录路径的生成

NC=1;               %迭代计数器,记录迭代次数

R_best=zeros(NC_max,n);       %各代最佳路线

L_best=inf.*ones(NC_max,1);   %各代最佳路线的长度

L_ave=zeros(NC_max,1);        %各代路线的平均长度

while NC<=NC_max        %停止条件之中的一个:达到最大迭代次数,停止

%%第二步:将m仅仅蚂蚁放到n个城市上

Randpos=[];   %随即存取

for i=1:(ceil(m/n))

Randpos=[Randpos,randperm(n)];

end

Tabu(:,1)=(Randpos(1,1:m))’;    %此句不太理解?

%%第三步:m仅仅蚂蚁按概率函数选择下一座城市,完毕各自的周游

for j=2:n     %所在城市不计算

for i=1:m    

visited=Tabu(i,1:(j-1)); %记录已訪问的城市,避免反复訪问

J=zeros(1,(n-j+1));       %待訪问的城市

P=J;                      %待訪问城市的选择概率分布

Jc=1;

for k=1:n

if length(find(visited==k))==0   %開始时置0

J(Jc)=k;

Jc=Jc+1;                         %訪问的城市个数自加1

end

end

%以下计算待选城市的概率分布

for k=1:length(J)

P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta);

end

P=P/(sum(P));

%按概率原则选取下一个城市

Pcum=cumsum(P);     %cumsum,元素累加即求和

Select=find(Pcum>=rand); %若计算的概率大于原来的就选择这条路线

to_visit=J(Select(1));

Tabu(i,j)=to_visit;

end

end

if NC>=2

Tabu(1,:)=R_best(NC-1,:);

end

%%第四步:记录本次迭代最佳路线

L=zeros(m,1);     %開始距离为0m*1的列向量

for i=1:m

R=Tabu(i,:);

for j=1:(n-1)

L(i)=L(i)+D(R(j),R(j+1));    %原距离加上第j个城市到第j+1个城市的距离

end

L(i)=L(i)+D(R(1),R(n));      %一轮下来后走过的距离

end

L_best(NC)=min(L);           %最佳距离取最小

pos=find(L==L_best(NC));

R_best(NC,:)=Tabu(pos(1),:); %此轮迭代后的最佳路线

L_ave(NC)=mean(L);           %此轮迭代后的平均距离

NC=NC+1                      %迭代继续

%%第五步:更新信息素

Delta_Tau=zeros(n,n);        %開始时信息素为n*n0矩阵

for i=1:m

for j=1:(n-1)

Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i);          

%此次循环在路径(ij)上的信息素增量

end

Delta_Tau(Tabu(i,n),Tabu(i,1))=Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L(i);

%此次循环在整个路径上的信息素增量

end

Tau=(1-Rho).*Tau+Delta_Tau; %考虑信息素挥发,更新后的信息素

%%第六步:禁忌表清零

Tabu=zeros(m,n);             %%直到最大迭代次数

end

%%第七步:输出结果

Pos=find(L_best==min(L_best)); %找到最佳路径(非0为真)

Shortest_Route=R_best(Pos(1),:) %最大迭代次数后最佳路径

Shortest_Length=L_best(Pos(1)) %最大迭代次数后最短距离

subplot(1,2,1)                  %绘制第一个子图形

DrawRoute(C,Shortest_Route)     %画路线图的子函数

subplot(1,2,2)                  %绘制第二个子图形

plot(L_best)

hold on                         %保持图形

plot(L_ave,’r’)

title(‘平均距离和最短距离‘)     %标题

function DrawRoute(C,R)

%%=========================================================================

%% DrawRoute.m

%% 画路线图的子函数

%%————————————————————————-

%% C Coordinate 节点坐标,由一个N×2的矩阵存储

%% R Route 路线

%%=========================================================================

N=length(R);

scatter(C(:,1),C(:,2));

hold on

plot([C(R(1),1),C(R(N),1)],[C(R(1),2),C(R(N),2)],‘g’)

hold on

for ii=2:N

plot([C(R(ii-1),1),C(R(ii),1)],[C(R(ii-1),2),C(R(ii),2)],’g’)

hold on

end

title(‘旅行商问题优化结果 ‘)

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/117943.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • 自带win10系统换win7的那些坑

    自带win10系统换win7的那些坑自带win10系统换win7的那些坑 这两天真是经历了一个换系统的巨坑。如果说这次换系统是一部历史的话那也一定是一部血泪史。今日4000多字的记录会把这部血泪史中的血和泪一一道出。不为别的只为:前车之鉴后事之师! 首先我对win10系统本身就很不喜欢,因为它不稳定兼容性差,还经常更新,用户总是给微软当小白鼠进行测试系统。之前就一直吐槽win10的自动更新无法…

  • zookeeper入门教程_入门教程

    zookeeper入门教程_入门教程zookeeperwatcher架构zookeeper 配置中心分布式ID分布式锁集群搭建数据一致性协议:zab协议Zookeeper Leader选举Observer角色及其配置watcher架构客户端首先将Watcher注册到服务器,同时将Watch对象保存到客户端的Watch管理器中。当Zookeeper服务器监听到的数据发生变化时,服务器会通知客户端,接着客户端的Watch管理器会触发相关的Watcher来回调响应处理逻辑,从而完成整体的数据发布/订阅流程。javaAPIJava

  • dos命令打开文件夹_dos命令开启无线网络

    dos命令打开文件夹_dos命令开启无线网络如何用dos命令查看文件?首先通过cd进入文件所在目录,然后执行start命令即可。【startfileName】:打开文件

    2022年10月14日
  • 无人机新手基础操作教程

    无人机行业的快速发展使得航拍逐渐流行起来。据本人了解无人机可以生产一些GIS数据。1.起飞与降落练习远离无人机,解锁飞控,缓慢推动油门等待无人机起飞,这就是起飞的操作步骤。其中推动油门一定要缓慢,即使已经推动一点距离,电机还没有启动也要慢慢来。降落时,同样需要注意操作顺序:降低油门,使飞行器缓慢的接近地面;离地面约5-250px处稍稍推动油门,降低下降速度;然后再次降低油门直至无人机触地(触底后不得推动油门);油门降到最低,锁定飞控。相对于起飞来说,降落…

  • matlab在极坐标中绘图y=sin(6x)_极坐标中θ范围怎么求

    matlab在极坐标中绘图y=sin(6x)_极坐标中θ范围怎么求在极坐标中绘图TryThisExampleTryThisExampleTryThisExampleTryThisExampleTryThisExampleTryThi

  • Odin Inspector 系列教程 — Dictionary Drawer Settings Attribute[通俗易懂]

    Odin Inspector 系列教程 — Dictionary Drawer Settings Attribute[通俗易懂]DictionaryDrawerSettings自定义字典绘制方式默认以左侧为key,右侧为value的形式展示,如果需要进行序列化,需要继承自SerializedMonoBehaviour[DictionaryDrawerSettings()][ShowInInspector][InfoBox(“为了序列化字典,我们需要做…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号