state-of-the-art implementations related to visual recognition and search

state-of-the-art implementations related to visual recognition and search

大家好,又见面了,我是全栈君,今天给大家准备了Idea注册码。

http://rogerioferis.com/VisualRecognitionAndSearch2014/Resources.html

Source Code

Non-exhaustive list of state-of-the-art implementations related to visual recognition and search. There is no warranty for the source code links below – use them at your own risk!

Feature Detection and Description

General Libraries: 

  • VLFeat – Implementation of various feature descriptors (including SIFT, HOG, and LBP) and covariant feature detectors (including DoG, Hessian, Harris Laplace, Hessian Laplace, Multiscale Hessian, Multiscale Harris). Easy-to-use Matlab interface. SeeVLFeat hands-on session training
  • OpenCV – Various implementations of modern feature detectors and descriptors (SIFT, SURF, FAST, BRIEF, ORB, FREAK, etc.)

Fast Keypoint Detectors for Real-time Applications: 

  • FAST – High-speed corner detector implementation for a wide variety of platforms
  • AGAST – Even faster than the FAST corner detector. A multi-scale version of this method is used for the BRISK descriptor (ECCV 2010).

Binary Descriptors for Real-Time Applications: 

  • BRIEF – C++ code for a fast and accurate interest point descriptor (not invariant to rotations and scale) (ECCV 2010)
  • ORB – OpenCV implementation of the Oriented-Brief (ORB) descriptor (invariant to rotations, but not scale)
  • BRISK – Efficient Binary descriptor invariant to rotations and scale. It includes a Matlab mex interface. (ICCV 2011)
  • FREAK – Faster than BRISK (invariant to rotations and scale) (CVPR 2012)

SIFT and SURF Implementations: 

Other Local Feature Detectors and Descriptors: 

  • VGG Affine Covariant features – Oxford code for various affine covariant feature detectors and descriptors.
  • LIOP descriptor – Source code for the Local Intensity order Pattern (LIOP) descriptor (ICCV 2011).
  • Local Symmetry Features – Source code for matching of local symmetry features under large variations in lighting, age, and rendering style (CVPR 2012).

Global Image Descriptors: 

  • GIST – Matlab code for the GIST descriptor
  • CENTRIST – Global visual descriptor for scene categorization and object detection (PAMI 2011)

Feature Coding and Pooling 

  • VGG Feature Encoding Toolkit – Source code for various state-of-the-art feature encoding methods – including Standard hard encoding, Kernel codebook encoding, Locality-constrained linear encoding, and Fisher kernel encoding.
  • Spatial Pyramid Matching – Source code for feature pooling based on spatial pyramid matching (widely used for image classification)

Convolutional Nets and Deep Learning 

  • Caffe – Fast C++ implementation of deep convolutional networks (GPU / CPU / ImageNet 2013 demonstration).
  • EBLearn – C++ Library for Energy-Based Learning. It includes several demos and step-by-step instructions to train classifiers based on convolutional neural networks.
  • Torch7 – Provides a matlab-like environment for state-of-the-art machine learning algorithms, including a fast implementation of convolutional neural networks.
  • Deep Learning – Various links for deep learning software.

Facial Feature Detection and Tracking 

  • IntraFace – Very accurate detection and tracking of facial features (C++/Matlab API).

Part-Based Models 

Attributes and Semantic Features 

Large-Scale Learning 

  • Additive Kernels – Source code for fast additive kernel SVM classifiers (PAMI 2013).
  • LIBLINEAR – Library for large-scale linear SVM classification.
  • VLFeat – Implementation for Pegasos SVM and Homogeneous Kernel map.

Fast Indexing and Image Retrieval 

  • FLANN – Library for performing fast approximate nearest neighbor.
  • Kernelized LSH – Source code for Kernelized Locality-Sensitive Hashing (ICCV 2009).
  • ITQ Binary codes – Code for generation of small binary codes using Iterative Quantization and other baselines such as Locality-Sensitive-Hashing (CVPR 2011).
  • INRIA Image Retrieval – Efficient code for state-of-the-art large-scale image retrieval (CVPR 2011).

Object Detection 

3D Recognition 

Action Recognition 




Datasets

Attributes 

  • Animals with Attributes – 30,475 images of 50 animals classes with 6 pre-extracted feature representations for each image.
  • aYahoo and aPascal – Attribute annotations for images collected from Yahoo and Pascal VOC 2008.
  • FaceTracer – 15,000 faces annotated with 10 attributes and fiducial points.
  • PubFig – 58,797 face images of 200 people with 73 attribute classifier outputs.
  • LFW – 13,233 face images of 5,749 people with 73 attribute classifier outputs.
  • Human Attributes – 8,000 people with annotated attributes. Check also this link for another dataset of human attributes.
  • SUN Attribute Database – Large-scale scene attribute database with a taxonomy of 102 attributes.
  • ImageNet Attributes – Variety of attribute labels for the ImageNet dataset.
  • Relative attributes – Data for OSR and a subset of PubFig datasets. Check also this link for the WhittleSearch data.
  • Attribute Discovery Dataset – Images of shopping categories associated with textual descriptions.

Fine-grained Visual Categorization 

Face Detection 

  • FDDB – UMass face detection dataset and benchmark (5,000+ faces)
  • CMU/MIT – Classical face detection dataset.

Face Recognition 

  • Face Recognition Homepage – Large collection of face recognition datasets.
  • LFW – UMass unconstrained face recognition dataset (13,000+ face images).
  • NIST Face Homepage – includes face recognition grand challenge (FRGC), vendor tests (FRVT) and others.
  • CMU Multi-PIE – contains more than 750,000 images of 337 people, with 15 different views and 19 lighting conditions.
  • FERET – Classical face recognition dataset.
  • Deng Cai’s face dataset in Matlab Format – Easy to use if you want play with simple face datasets including Yale, ORL, PIE, and Extended Yale B.
  • SCFace – Low-resolution face dataset captured from surveillance cameras.

Handwritten Digits 

  • MNIST – large dataset containing a training set of 60,000 examples, and a test set of 10,000 examples.

Pedestrian Detection

Generic Object Recognition 

  • ImageNet – Currently the largest visual recognition dataset in terms of number of categories and images.
  • Tiny Images – 80 million 32×32 low resolution images.
  • Pascal VOC – One of the most influential visual recognition datasets.
  • Caltech 101 / Caltech 256 – Popular image datasets containing 101 and 256 object categories, respectively.
  • MIT LabelMe – Online annotation tool for building computer vision databases.

Scene Recognition

Feature Detection and Description 

Action Recognition

RGBD Recognition 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/117411.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • idea启动tomcat控制台乱码_idea tomcat 乱码

    idea启动tomcat控制台乱码_idea tomcat 乱码最近在部署web项目启动tomcat时日志乱码了,很难受,试着很多方法也没有解决,最后的解决方法让我大跌眼镜,故记录一下,建议看到最后:1.修改本地tomcat下conf目录下logging.properties文件内容新增java.util.logging.ConsoleHandler.encoding=GBK2.修改tomcat下bin-catalina.bat文件3.在tomcat的conf-server.xml中修改4.在idea中修改配置ps:如果还是不行,就跟我今天遇到的

  • ArrayList扩容机制(基于jdk1.8)

    ArrayList扩容机制(基于jdk1.8)一.ArrayList继承了AbstractList,实现了List接口,底层实现基于数组,因此可以认为是一个可变长度的数组。二.在讲扩容机制之前,我们需要了解一下ArrayList中最主要的几个变量://定义一个空数组以供使用privatestaticfinalObject[]EMPTY_ELEMENTDATA={};//也是一个空数组,跟上边的空数组不同之处在于,这个是在默…

  • hive数据类型转换cast_c语言数据类型的转换

    hive数据类型转换cast_c语言数据类型的转换在《Hive内置数据类型》文章中,我们提到了Hive内置数据类型由基本数据类型和复杂数据类型组成。今天的话题是Hive数据类型之间的转换。同Java语言一样,Hive也包括隐式转换(implicitconversions)和显式转换(explicitlyconversions)。  Hive在需要的时候将会对numeric类型的数据进行隐式转换。比如我们对两个不同数据类型的数字进行比较

  • java多线程并发之旅-14-lock free queue 无锁队列[通俗易懂]

    java多线程并发之旅-14-lock free queue 无锁队列[通俗易懂]无锁队列能实现吗?上面说的加锁的环形队列,可以保证线程安全。但是加锁能不能去掉呢?答案是肯定的,请看下面的娓娓道来。i++是原子操作吗?i++和++i是原子操作吗?有一个很多人也许都不是很清楚的问题:i++或++i是一个原子操作吗?在上一节,其实已经提到了,在SMP(对称多处理器)上,即使是单条递减汇编指令,其原子性也是不能保证的。那么在单处理机系统中呢?在编译器对C/C++源代码…

  • 一看就能学会的H5视频推流方案[通俗易懂]

    一看就能学会的H5视频推流方案[通俗易懂]一看就能学会的H5视频推流方案

  • redis过期策略六种(java的内存回收机制)

    Redis缓存作为提高系统性能最好的方式相信大家对其一定不陌生,各位作为秃头老码农不仅需要掌握Redis的基础用法还得了解Redis的相关原理,比如Redis过期策略和内存淘汰机制。大家都知道,Redis缓存使用的是内存资源,虽然缓存服务器会配置比较高的内存资源,但如果对于Redis中的缓存数据我们不管不顾,内存资源总有耗尽的时候,这时缓存服务器就无法再对外提供服务了。我们要用有限的服务器资源支撑…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号