linux设备驱动程序第四部分:从如何定位oops对代码的调试方法,驱动线「建议收藏」

linux设备驱动程序第四部分:从如何定位oops对代码的调试方法,驱动线

大家好,又见面了,我是全栈君。

在一个我们谈到了如何编写一个简单的字符设备驱动程序,我们不是神,编写肯定会失败的代码,在这个过程中,我们需要继续写代码调试。在普通c应用。我们经常使用printf输出信息。或者使用gdb要调试程序,然后司机如何调试它?的问题,在应用程序中执行这样的程序就会报segmentation fault的错误,而因为驱动程序的特殊性,出现此类情况后往往会直接造成系统宕机。并会抛出oops信息。那么我们怎样来分析oops信息呢,甚至依据oops信息来定位详细的出错的代码行呢?以下就依据一个简单的实例来说明怎样调试驱动程序。

怎样依据oops定位代码行

我们借用linux设备驱动第二篇:构造和执行模块里面的hello world程序来演示出错的情况,含有错误代码的hello world例如以下:

#include <linux/init.h>
#include <linux/module.h>
MODULE_LICENSE("Dual BSD/GPL");

static int hello_init(void)
{
        char *p = NULL;
        memcpy(p, "test", 4);
        printk(KERN_ALERT "Hello, world\n");
        return 0;
}
static void hello_exit(void)
{

        printk(KERN_ALERT "Goodbye, cruel world\n");
}

module_init(hello_init);
module_exit(hello_exit);

 

Makefile文件例如以下:

ifneq ($(KERNELRELEASE),)
obj-m := helloworld.o
else
KERNELDIR ?= /lib/modules/$(shell uname -r)/build
PWD := $(shell pwd)
default:
        $(MAKE) -C $(KERNELDIR) M=$(PWD) modules
endif

clean:
        rm -rf *.o *~ core .depend .*.cmd *.ko *.mod.c .tmp_versions modules.order  Module.symvers

非常明显,以上代码的第8行是一个空指针错误。insmod后会出现以下的oops信息:

[  459.516441] BUG: unable to handle kernel NULL pointer dereference at           (null)
[  459.516445] <span style="color:#ff0000;">IP: [<ffffffffc061400d>] hello_init+0xd/0x30 [helloworld]</span>
[  459.516448] PGD 0 
[  459.516450] Oops: 0002 [#1] SMP 
[  459.516452] Modules linked in: helloworld(OE+) vmw_vsock_vmci_transport vsock coretemp crct10dif_pclmul crc32_pclmul ghash_clmulni_intel aesni_intel vmw_balloon snd_ens1371 aes_x86_64 lrw snd_ac97_codec gf128mul glue_helper ablk_helper cryptd ac97_bus gameport snd_pcm serio_raw snd_seq_midi snd_seq_midi_event snd_rawmidi snd_seq snd_seq_device snd_timer vmwgfx btusb ttm snd drm_kms_helper drm soundcore shpchp vmw_vmci i2c_piix4 rfcomm bnep bluetooth 6lowpan_iphc parport_pc ppdev mac_hid lp parport hid_generic usbhid hid psmouse ahci libahci floppy e1000 vmw_pvscsi vmxnet3 mptspi mptscsih mptbase scsi_transport_spi pata_acpi [last unloaded: helloworld]
[  459.516476] CPU: 0 PID: 4531 Comm: insmod Tainted: G           OE 3.16.0-33-generic #44~14.04.1-Ubuntu
[  459.516478] Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 05/20/2014
[  459.516479] task: ffff88003821f010 ti: ffff880038fa0000 task.ti: ffff880038fa0000
[  459.516480] RIP: 0010:[<ffffffffc061400d>]  [<ffffffffc061400d>] hello_init+0xd/0x30 [helloworld]
[  459.516483] RSP: 0018:ffff880038fa3d40  EFLAGS: 00010246
[  459.516484] RAX: ffff88000c31d901 RBX: ffffffff81c1a020 RCX: 000000000004b29f
[  459.516485] RDX: 000000000004b29e RSI: 0000000000000017 RDI: ffffffffc0615024
[  459.516485] RBP: ffff880038fa3db8 R08: 0000000000015e80 R09: ffff88003d615e80
[  459.516486] R10: ffffea000030c740 R11: ffffffff81002138 R12: ffff88000c31d0c0
[  459.516487] R13: 0000000000000000 R14: ffffffffc0614000 R15: ffffffffc0616000
[  459.516488] FS:  00007f8a6fa86740(0000) GS:ffff88003d600000(0000) knlGS:0000000000000000
[  459.516489] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[  459.516490] CR2: 0000000000000000 CR3: 0000000038760000 CR4: 00000000003407f0
[  459.516522] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[  459.516524] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[  459.516524] Stack:
[  459.516537]  ffff880038fa3db8 ffffffff81002144 0000000000000001 0000000000000001
[  459.516540]  0000000000000001 ffff880028ab5040 0000000000000001 ffff880038fa3da0
[  459.516541]  ffffffff8119d0b2 ffffffffc0616018 00000000bd1141ac ffffffffc0616018
[  459.516543] Call Trace:
[  459.516548]  [<ffffffff81002144>] ?

do_one_initcall+0xd4/0x210[ 459.516550] [<ffffffff8119d0b2>] ? __vunmap+0xb2/0x100[ 459.516554] [<ffffffff810ed9b1>] load_module+0x13c1/0x1b80[ 459.516557] [<ffffffff810e9560>] ? store_uevent+0x40/0x40[ 459.516560] [<ffffffff810ee2e6>] SyS_finit_module+0x86/0xb0[ 459.516563] [<ffffffff8176be6d>] system_call_fastpath+0x1a/0x1f[ 459.516564] Code: <c7> 04 25 00 00 00 00 74 65 73 74 31 c0 48 89 e5 e8 a2 86 14 c1 31 [ 459.516573] RIP [<ffffffffc061400d>] hello_init+0xd/0x30 [helloworld][ 459.516575] RSP <ffff880038fa3d40>[ 459.516576] CR2: 0000000000000000[ 459.516578] ---[ end trace 7c52cc8624b7ea60 ]---

以下简单分析下oops信息的内容。

由BUG: unable to handle kernel NULL pointer dereference at           (null)知道出错的原因是使用了空指针。标红的部分确定了详细出错的函数。Modules linked in: helloworld表明了引起oops问题的详细模块。

call trace列出了函数的调用信息。这些信息中当中标红的部分是最实用的。我们能够依据其信息找到详细出错的代码行。

以下就来说下,怎样定位到详细出错的代码行。

第一步我们须要使用objdump把编译生成的bin文件反汇编,我们这里就是helloworld.o,例如以下命令把反汇编信息保存到err.txt文件里:

objdump helloworld.o -D > err.txt

err.txt内容例如以下:

helloworld.o:     file format elf64-x86-64


Disassembly of section .text:

<span style="color:#ff0000;">0000000000000000 <init_module>:</span>
   0:	e8 00 00 00 00       	callq  5 <init_module+0x5>
   5:	55                   	push   %rbp
   6:	48 c7 c7 00 00 00 00 	mov    $0x0,%rdi
   d:	c7 04 25 00 00 00 00 	movl   $0x74736574,0x0
  14:	74 65 73 74 
  18:	31 c0                	xor    %eax,%eax
  1a:	48 89 e5             	mov    %rsp,%rbp
  1d:	e8 00 00 00 00       	callq  22 <init_module+0x22>
  22:	31 c0                	xor    %eax,%eax
  24:	5d                   	pop    %rbp
  25:	c3                   	retq   
  26:	66 2e 0f 1f 84 00 00 	nopw   %cs:0x0(%rax,%rax,1)
  2d:	00 00 00 

0000000000000030 <cleanup_module>:
  30:	e8 00 00 00 00       	callq  35 <cleanup_module+0x5>
  35:	55                   	push   %rbp
  36:	48 c7 c7 00 00 00 00 	mov    $0x0,%rdi
  3d:	31 c0                	xor    %eax,%eax
  3f:	48 89 e5             	mov    %rsp,%rbp
  42:	e8 00 00 00 00       	callq  47 <cleanup_module+0x17>
  47:	5d                   	pop    %rbp
  48:	c3                   	retq   

Disassembly of section .rodata.str1.1:

0000000000000000 <.rodata.str1.1>:
   0:	01 31                	add    %esi,(%rcx)
   2:	48                   	rex.W
   3:	65                   	gs
   4:	6c                   	insb   (%dx),%es:(%rdi)
   5:	6c                   	insb   (%dx),%es:(%rdi)
   6:	6f                   	outsl  %ds:(%rsi),(%dx)
   7:	2c 20                	sub    $0x20,%al
   9:	77 6f                	ja     7a <cleanup_module+0x4a>
   b:	72 6c                	jb     79 <cleanup_module+0x49>
   d:	64 0a 00             	or     %fs:(%rax),%al
  10:	01 31                	add    %esi,(%rcx)
  12:	47 6f                	rex.RXB outsl %ds:(%rsi),(%dx)
  14:	6f                   	outsl  %ds:(%rsi),(%dx)
  15:	64                   	fs
  16:	62                   	(bad)  
  17:	79 65                	jns    7e <cleanup_module+0x4e>
  19:	2c 20                	sub    $0x20,%al
  1b:	63 72 75             	movslq 0x75(%rdx),%esi
  1e:	65                   	gs
  1f:	6c                   	insb   (%dx),%es:(%rdi)
  20:	20 77 6f             	and    %dh,0x6f(%rdi)
  23:	72 6c                	jb     91 <cleanup_module+0x61>
  25:	64 0a 00             	or     %fs:(%rax),%al

Disassembly of section .modinfo:

0000000000000000 <__UNIQUE_ID_license0>:
   0:	6c                   	insb   (%dx),%es:(%rdi)
   1:	69 63 65 6e 73 65 3d 	imul   $0x3d65736e,0x65(%rbx),%esp
   8:	44 75 61             	rex.R jne 6c <cleanup_module+0x3c>
   b:	6c                   	insb   (%dx),%es:(%rdi)
   c:	20 42 53             	and    %al,0x53(%rdx)
   f:	44 2f                	rex.R (bad) 
  11:	47 50                	rex.RXB push %r8
  13:	4c                   	rex.WR
	...

Disassembly of section .comment:

0000000000000000 <.comment>:
   0:	00 47 43             	add    %al,0x43(%rdi)
   3:	43 3a 20             	rex.XB cmp (%r8),%spl
   6:	28 55 62             	sub    %dl,0x62(%rbp)
   9:	75 6e                	jne    79 <cleanup_module+0x49>
   b:	74 75                	je     82 <cleanup_module+0x52>
   d:	20 34 2e             	and    %dh,(%rsi,%rbp,1)
  10:	38 2e                	cmp    %ch,(%rsi)
  12:	32 2d 31 39 75 62    	xor    0x62753931(%rip),%ch        # 62753949 <cleanup_module+0x62753919>
  18:	75 6e                	jne    88 <cleanup_module+0x58>
  1a:	74 75                	je     91 <cleanup_module+0x61>
  1c:	31 29                	xor    %ebp,(%rcx)
  1e:	20 34 2e             	and    %dh,(%rsi,%rbp,1)
  21:	38 2e                	cmp    %ch,(%rsi)
  23:	32 00                	xor    (%rax),%al

Disassembly of section __mcount_loc:

0000000000000000 <__mcount_loc>:

由oops信息我们知道出错的地方是hello_init的地址偏移0xd。而有dump信息知道。hello_init的地址即init_module的地址。由于hello_init即本模块的初始化入口,假设在其它函数中出错。dump信息中就会有对应符号的地址。由此我们得到出错的地址是0xd,下一步我们就能够使用addr2line来定位详细的代码行:

addr2line -C -f -e helloworld.o d

此命令就能够得到行号了。以上就是通过oops信息来定位驱动崩溃的行号。

其它调试手段

以上就是通过oops信息来获取具体的导致崩溃的代码行,这样的情况都是用在遇到比較严重的错误导致内核挂掉的情况下使用的。另外比較经常使用的调试手段就是使用printk来输出信息打印。printk的用法类似printf,仅仅是要注意一下打印级别,具体介绍在linux设备驱动第二篇:构造和执行模块中已有描写叙述,另外须要注意的是大量使用printk会严重拖慢系统,所以使用过程中也要注意。

以上两种调试手段是我工作中最经常使用的,另一些其它的调试手段,比如使用/proc文件系统,使用trace等用户空间程序,使用gdb。kgdb等。这些调试手段一般不太easy使用或者不太方便使用。所以这里就不在介绍了。

介绍完驱动的调试方法后。下一篇会介绍下linux驱动的并发与竞态,欢迎关注。

第一时间获得博客更新提醒。以及很多其它技术信息分享,欢迎关注个人微信公众平台:程序猿互动联盟(coder_online)。扫一扫下方二维码或搜索微信号coder_online就可以关注,我们能够在线交流。

linux设备驱动程序第四部分:从如何定位oops对代码的调试方法,驱动线「建议收藏」

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/116650.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

  • linux 编译汇编,linux下的汇编教程

    linux 编译汇编,linux下的汇编教程linux下的汇编教程第一部分Linux下ARM汇编语法尽管在Linux下使用C或C++编写程序很方便,但汇编源程序用于系统最基本的初始化,如初始化堆栈指针、设置页表、操作ARM的协处理器等。初始化完成后就可以跳转到C代码执行。需要注意的是,GNU的汇编器遵循AT&T的汇编语法,可以从GNU的站点(www.gnu.org)上下载有关规范。一.Linux汇编行结构任何汇编行都是如下结构…

  • 【矩阵论】单射、满射与双射

    【矩阵论】单射、满射与双射映射;Mapping映射是两个集合中的一种特殊的对应关系,即如果按照某种对应法则,对于集合A中的任何一个元素,在集合B中都有惟一的元素与它对应,那么这样的对应(包括对应法则)叫做集合A到集合B的映射。其中,A中的元素称为原像,B中的元素称为A中元素的像(imageimage)。单射、满射与双射;Injection,surjectionandbijection单射:在英语中称为injection

  • Echarts 地图生成 以及生成geojson文件(附带完整代码)

    Echarts 地图生成 以及生成geojson文件(附带完整代码)前言:需要实现的效果就是生成省级地图,点击省级地图中的市切换至市级地图。为了自己方便查阅,也方便大家使用。效果如下:所用的插件echarts.js官方地址:http://echarts.baidu.com/examples/使用方法:1、头部引入(官网下载地址:点这里下载文件)&lt;!–引入ECharts文件–&gt;&lt;scriptsr…

    2022年10月31日
  • c比python快多少倍_python和c++哪个简单

    c比python快多少倍_python和c++哪个简单国外有测试指出在相同复杂度算法中,C++约比Python快50倍左右。因此Python适合上层应用;C++则适合底层控制。本文介绍如何让C++和Python形成优势互补

  • Java MD5 加密工具类[通俗易懂]

    Java MD5 加密工具类[通俗易懂]一、MD5简介MD5消息摘要算法(英语:MD5Message-DigestAlgorithm),一种被广泛使用的密码散列函数,可以产生出一个128位(16字节)的散列值(hashvalue),用于确保信息传输完整一致。MD5算法是不可逆的。MD5由美国密码学家罗纳德·李维斯特(RonaldLinnRivest)设计,于1992…

  • Java封装详解,很简单

    Java封装详解,很简单大家好,今天来给大家分享一下Java封装面向对象有三大特征:1.封装2.继承3.多态我们来讲Java封装,它也是Java面向对象的三大特征之一封装,大白话的解释就是,把一个东西,装到箱子了,只留小小的口,用于外界访问画一个图就是该露的露,该藏的藏我们在程序设计的过程中要追求“高内聚,低耦合”。高内聚就是类的内部数据操作细节自己来完成,不允许外部干涉,低耦合:就是,仅暴露少量的方法给外部使用封装(数据的隐藏)通常,应禁止直接访问一个对象中数据的实际表示,而是应该通过操作接口来访问

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号