一文说清文本编码那些事

一文说清文本编码那些事

一直以来,编码问题像幽灵一般,不少开发人员都受过它的困扰。

试想你请求一个数据,却得到一堆乱码,丈二和尚摸不着头脑。有同事质疑你的数据是乱码,虽然你很确定传了 UTF-8 ,却也无法自证清白,更别说帮同事 debug 了。

有时,靠着百度和一手瞎调的手艺,乱码也能解决。尽管如此,还是很羡慕那些骨灰级程序员。为什么他们每次都能犀利地指出问题,并快速修复呢?原因在于,他们早就把编码问题背后的各种来龙去脉搞清楚了。

本文从 ASCII 码说起,带你扒一扒编码背后那些事。相信搞清编码的原理后,你将不再畏惧任何编码问题。

从 ASCII 码说起

现代计算机技术从英文国家兴起,最先遇到的也是英文文本。英文文本一般由 26 个字母、 10 个数字以及若干符号组成,总数也不过 100 左右。

计算机中最基本的存储单位为 字节 ( byte ),由 8 个比特位( bit )组成,也叫做 八位字节 ( octet )。8 个比特位可以表示 $ 2^8 = 256 $ 个字符,看上去用字节来存储英文字符即可?

计算机先驱们也是这么想的。他们为每个英文字符编号,再加上一些控制符,形成了我们所熟知的 ASCII 码表。实际上,由于英文字符不多,他们只用了字节的后 7 位而已。

<span>一文说清文本编码那些事</span>

根据 ASCII 码表,由 010000018 个比特位组成的八位字节,代表字母 A

<span>一文说清文本编码那些事</span>

顺便提一下,比特本身没有意义,比特上下文 ( context )中才构成信息。举个例子,对于内存中一个字节 01000001 ,你将它看做一个整数,它就是 65 ;将它作为一个英文字符,它就是字母 A ;你看待比特的方式,就是所谓的上下文。

所以,猜猜下面这个程序输出啥?

#include <stdio.h>

int main(int argc, char *argv[])
{
    char value = 0x41;

    // as a number, value is 65 or 0x41 in hexadecimal
    printf("%d\n", value);

    // as a ASCII character, value is alphabet A
    printf("%c\n", value);

    return 0;
}

latin1

西欧人民来了,他们主要使用拉丁字母语言。与英语类似,拉丁字母数量并不大,大概也就是几十个。于是,西欧人民打起 ASCII 码表那个未用的比特位( b8 )的主意。

还记得吗?ASCII 码表总共定义了 128 个字符,范围在 0~127 之间,字节最高位 b8 暂未使用。于是,西欧人民将拉丁字母和一些辅助符号(如欧元符号)定义在 128~255 之间。这就构成了 latin1 ,它是一个 8 位字符集,定义了以下字符:

<span>一文说清文本编码那些事</span>

图中绿色部分是不可打印的( unprintable )控制字符,左半部分是 ASCII 码。因此,latin1 字符集是 ASCII 码的超集:

<span>一文说清文本编码那些事</span>

一个字节掰成两半,欧美两兄弟各用一半。至此,欧美人民都玩嗨了,东亚人民呢?

GB2312、GBK和GB18030

由于受到汉文化的影响,东亚地区主要是汉字圈,我们便以中文为例展开介绍。

汉字有什么特点呢?—— 光常用汉字就有几千个,这可不是一个字节能胜任的。一个字节不够就两个呗。道理虽然如此,操作起来却未必这么简单。

首先,将需要编码的汉字和 ASCII 码整理成一个字符集,例如 GB2312 。为什么需要 ASCII 码呢?因为,在计算机世界,不可避免要跟数字、英文字母打交道。至于拉丁字母,重要性就没那么大,也就无所谓了。

<span>一文说清文本编码那些事</span>

GB2312 字符集总共收录了 6 千多个汉字,用两个字节来表示足矣,但事情远没有这么简单。同样的数字字符,在 GB2312 中占用 2 个字节,在 ASCII 码中占用 1 个字节,这不就不兼容了吗?计算机里太多东西涉及 ASCII 码了,看看一个 http 请求:

GET / HTTP/1.1
Host: www.example.com   

那么,怎么兼容 GB2312ASCII 码呢?天无绝人之路, 变长 编码方案应运而生。

变长编码方案,字符由长度不一的字节表示,有些字符只需 1 字节,有些需要 2 字节,甚至有些需要更多字节。GB2312 中的 ASCII 码与原来保持一致,还是用一个字节来表示,这样便解决了兼容问题。

GB2312 中,如果一个字节最高位 b80 ,该字节便是单字节编码,即 ASCII 码。如果字节最高位 b81 ,它就是双字节编码的首字节,与其后字节一起表示一个字符。

<span>一文说清文本编码那些事</span>

变长编码方案目的在于兼容 ASCII 码,但也带来一个问题:由于字节编码长度不一,定位第 N 个字符只能通过遍历实现,时间复杂度从 $ O(1) $ 退化到 $ O(N) $ 。好在这种操作场景并不多见,因此影响可以忽略。

GB2312 收录的汉字个数只有常用的 6 千多个,遇到生僻字还是无能为力。因此,后来又推出了 GBKGB18030 字符集。GBKGB2312 的超集,完全兼容 GB2312 ;而 GB18030 又是 GBK 的超集,完全兼容 GBK

<span>一文说清文本编码那些事</span>

因此,对中文编码文本进行解码,指定 GB18030 最为健壮:

>>> raw = b'\xfd\x88\xb5\xc4\xb4\xab\xc8\xcb'
>>> raw.decode('gb18030')
'龍的传人'

指定 GBKGB2312 就只好看运气了,GBK 多半还没事:

>>> raw.decode('gbk')
'龍的传人'

GB2312 经常直接抛锚不商量:

>>> raw.decode('gb2312')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
UnicodeDecodeError: 'gb2312' codec can't decode byte 0xfd in position 0: illegal multibyte sequence

chardet 是一个不错的文本编码检测库,用起来很方便,但对中文编码支持不是很好。经常中文编码的文本进去,检测出来的结果是 GB2312 ,但一用 GB2312 解码就跪:

>>> import chardet
>>> raw = b'\xd6\xd0\xb9\xfa\xc8\xcb\xca\xc7\xfd\x88\xb5\xc4\xb4\xab\xc8\xcb'
>>> chardet.detect(raw)
{'encoding': 'GB2312', 'confidence': 0.99, 'language': 'Chinese'}
>>> raw.decode('GB2312')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
UnicodeDecodeError: 'gb2312' codec can't decode byte 0xfd in position 8: illegal multibyte sequence

掌握 GB2312GBKGB18030 三者的关系后,我们可以略施小计。如果 chardet 检测出来结果是 GB2312 ,就用 GB18030 去解码,大概率可以成功!

>>> raw.decode('GB18030')
'中国人是龍的传人'

Unicode

GB2312GBKGB18030 都是中文编码字符集。虽然 GB18030 也包含日韩表意文字,算是国际字符集,但毕竟是以中文为主,无法适应全球化应用。

在计算机发展早期,不同国家都推出了自己的字符集和编码方案,互不兼容。中文编码的文本在使用日文编码的系统上是无法显示的,这就给国际交往带来障碍。

这时,英雄出现了。统一码联盟 站出来说要发展一个通用的字符集,收录世界上所有字符,这就是 Unicode 。经过多年发展, Unicode 已经成为世界上最通用的字符集,也是计算机科学领域的业界标准。

Unicode 已经收录的字符数量已经超过 13 万个,每个字符需占用超过 2 字节。由于常用编程语言一般没有 24 位数字类型,因此一般用 32 位数字表示一个字符。这样一来,同样的一个英文字母,在 ASCII 中只需占用 1 字节,在 Unicode 则需要占用 4 字节!英美人民都要哭了,试想你磁盘中的文件大小都增大了 4 倍是什么感受!

UTF-8

为了兼容 ASCII 并优化文本空间占用,我们需要一种变长字节编码方案,这就是著名的 UTF-8 。与 GB2312 等中文编码一样,UTF-8 用不固定的字节数来表示字符:

  1. ASCII 字符 Unicode 码位由 U+0000U+007F ,用 1 个字节编码,最高位为 0
  2. 码位由 U+0080U+07FF 的字符,用 2 个字节编码,首字节以 110 开头,其余字节以 10 开头;
  3. 码位由 U+0800U+FFFF 的字符,用 3 个字节编码,首字节以 1110 开头,其余字节同样以 10 开头;
  4. 46 字节编码的情况以此类推;

<span>一文说清文本编码那些事</span>

如图,以 0 开头的字节为 单字节 编码,总共 7 个有效编码位,编码范围为 U+0000U+007F ,刚好对应 ASCII 码所有字符。以 110 开头的字节为 双字节 编码,总共 11 个有效编码位,最大值是 0x7FF ,因此编码范围为 U+0080U+07FF ;以 1110 开头的字节为 三字节 编码,总共 16 个有效编码位,最大值是 0xFFFF 因此编码范围为 U+0800U+FFFF

根据开头不同, UTF-8 流中的字节,可以分为以下几类:

字节最高位 类别 有效位
0 单字节编码 7
10 多字节编码非首字节
110 双字节编码首字节 11
1110 三字节编码首字节 16
11110 四字节编码首字节 21
111110 五字节编码首字节 26
1111110 六字节编码首字节 31

至此,我们已经具备了读懂 UTF-8 编码字节流的能力,不信来看一个例子:

<span>一文说清文本编码那些事</span>

概念回顾

一直以来,字符集编码 这两个词一直是混着用的。现在,我们总算有能力厘清这两者间的关系了。

字符集 顾名思义,就是由一定数量字符组成的集合,每个字符在集合中有唯一编号。前文提及的 ASCIIlatin1GB2312GBKGB18030 以及 Unicode 等,无一例外,都是字符集。

计算机存储和网络通讯的基本单位都是 字节 ,因此文本必须以 字节序列 的形式进行存储或传输。那么,字符编号如何转化成字节呢?这就是 编码 要回答的问题。

ASCII 码和 latin 中,字符编号与字节一一对应,这是一种编码方式。GB2312 则采用变长字节,这是另一种编码方式。而 Unicode 则存在多种编码方式,除了 最常用的 UTF-8 编码,还有 UTF-16 等。实际上,UTF-16 编码效率比 UTF-8 更高,但由于无法兼容 ASCII ,应用范围受到很大制约。

最佳实践

认识文本编码的前世今生之后,应该如何规避编码问题呢?是否存在一些最佳实践呢?答案是肯定的。

编码选择

项目开始前,需要选择一种适应性广的编码方案,UTF-8 是首选,好处多多:

  • Unicode 是业界标准,编码字符数量最多,天然支持国际化;
  • UTF-8 完全兼容 ASCII 码,这是硬性指标;
  • UTF-8 目前应用最广;

如因历史原因,不得不使用中文编码方案,则优先选择 GB18030 。这个标准最新,涵盖字符最多,适应性最强。尽量避免采用 GBK ,特别是 GB2312 等老旧编码标准。

编程习惯

如果你使用的编程语言,字符串类型支持 Unicode ,那问题就简单了。由于 Unicode 字符串肯定不会导致诸如乱码等编码问题,你只需在输入和输出环节稍加留意。

举个例子,Python3 以后, str 就是 Unicode 字符串了,而 bytes 则是 字节序列 。因此,在 Python 3 程序中,核心逻辑应该统一用 str 类型,避免使用 bytes 。文本编码、解码操作则统一在程序的输入、输出层中进行。

假如你正在开发一个 API 服务,数据库数据编码是 GBK ,而用户却使用 UTF-8 编码。那么,在程序 输入层GBK 数据从数据库读出后,解码转换成 Unicode 数据,再进入核心层处理。在程序 核心层 ,数据以 Unicode 形式进行加工处理。由于核心层处理逻辑可能很复杂,统一采用 Unicode 可以减少问题的发生。最后,在程序的 输出层 将数据以 UTF-8 编码,再返回给客户端。

整个过程伪代码大概如下:

# input
# read gbk data from database and decode it to unicode
data = read_from_database().decode('gbk')

# core
# process unicode data only
result = process(data)

# output
# encoding unicode data into utf8
response_to_user(result.encode('utf8'))

这样的程序结构看起来跟个三明治一样,非常形象:

<span>一文说清文本编码那些事</span>

当然了,还有很多编程语言字符串还不支持 UnicodePython 2 中的 str 对象,跟 Python 3 中的 bytes 比较像,只是字节序列;C 语言中的字符串甚至更原始。

这都无关紧要,好的编程习惯是相通的:程序核心层统一使用某种编码,输入输出层则负责编码转换。至于核心层使用何种编码,主要看程序中哪种编码使用最多,一般是跟数据库编码保持一致即可。

附录

更多 Python 技术文章,请查看:Python语言小册 ,转至 原文 可获得最佳阅读体验。

订阅更新,获取更多学习资料,请关注我们的 微信公众号

小菜学编程

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/2653.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • Editormd的使用——在线编辑和查看文章

    Editormd的使用——在线编辑和查看文章使用Editormd可以方便地在界面上嵌入markdown编辑器,并能够实时预览。先看一下实现效果:编辑文章界面:展示文章界面:用法:首先,到https://pandao.github.io/editor.md/下载Editormd的压缩包,解压到自己的静态资源文件夹下。第二步,引入必要的文件: <linkrel=”stylesheet”href=”/resource/assets/editormd/css/editormd.css”/><linkrel=

  • 移动端开发技术浅析

    移动端开发技术浅析移动端开发技术浅析目录APK下载概述技术介绍技术对比参考资料1.APK下载百度云链接:https://pan.baidu.com/s/1pLp44Fh2.概述“一次编码,处处运行”永远是程序员们的理想乡。二十年前Java正是举着这面大旗登场,击败了众多竞争对手。但是时至今日,事实已经证明了Java笨重的体型和缓慢的发展显然已经很难再抓住这个时代快速跃动的脚步。在

  • siamfc运行_sta系统

    siamfc运行_sta系统修改siamfc文件夹下的Load.py文件importsyssys.path.append(‘/home/nanorobot/Documents/siamfc/siamfc’)sys.path.append(‘/home/nanorobot/Documents/siamfc’)fromsiamfcimportTrackerSiamFC,ops上面是把需要用到的自定义的模块路径引入进来,以防后面找不到模块,路径根据你自己的文件位置改。下面是修改主函数:if__name__==

  • Linux vim退出_怎么关闭vim

    Linux vim退出_怎么关闭vim有些终端在vim退出后可以恢复到打开vim前终端的状态,类似这样:$vim/etc/sysconfig/####这里表示打开vim#####sdskk,一些文件内容:q$vim/etc/sysconfig/##终端恢复到先前状态但是有些不行,解决这个问题需要以下两步:1、设置TERM环境变量为xterm或者xterm-color,可以在.ba…

  • centos filezilla

    centos filezilla

  • 挖矿病毒解决

    挖矿病毒解决1、进程cpu100%watchdog2、解决/tmpnetstat(矿池、鱼池、sup)进程,文件主程序crontab-l计划任务分析脚本3、如何进来的?web日志、log4j、命令、漏洞:dockeryamfastjiosn、邮件、下载恶意软件(doc、rar、恶意源、docker、wget)4、定位如何传播:蠕虫、ssh弱口令、内网ip探测工具、大量exp、Linux本身免密登陆、root高权限程序劫持、sodo5、解决措施下载样本、分析样

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号