在手写数字识别的例子中_手写识别

在手写数字识别的例子中_手写识别1.概念介绍:图像识别(ImageRecognition)是指利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。 图像识别的发展经历了三个阶段:文字识别、数字图像处理与识别、物体识别。机器学习领域一般将此类识别问题转化为分类问题。手写识别是常见的图像识别任务。计算机通过手写体图片来识别出图片中的字,与印刷字体不同的是,不同人的手写体风…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全家桶1年46,售后保障稳定

1.概念介绍:

图像识别(Image Recognition)是指利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。 

图像识别的发展经历了三个阶段:文字识别、数字图像处理与识别、物体识别。机器学习领域一般将此类识别问题转化为分类问题。

手写识别是常见的图像识别任务。计算机通过手写体图片来识别出图片中的字,与印刷字体不同的是,不同人的手写体风格迥异,大小不一, 造成了计算机对手写识别任务的一些困难。 

数字手写体识别由于其有限的类别(0~9共10个数字)成为了相对简单 的手写识别任务。DBRHD和MNIST是常用的两个数字手写识别数据集

2.数据介绍:

MNIST的下载链接:http://yann.lecun.com/exdb/mnist/。

MNIST是一个包含数字0~9的手写体图片数据集,图片已归一化为以手写数 字为中心的28*28规格的图片。

MNIST由训练集与测试集两个部分组成,各部分 规模如下: 

                                         训练集:60,000个手写体图片及对应标签 

                                         测试集:10,000个手写体图片及对应标签

在手写数字识别的例子中_手写识别

DBRHD(Pen-Based Recognition of Handwritten Digits Data Set)是UCI的机器学习中心提供的数字手写体数据库: https://archive.ics.uci.edu/ml/datasets/PenBased+Recognition+of+Handwritten+Digits。 

DBRHD数据集包含大量的数字0~9的手写体图片,这些图片来源于44位不同的人的手写数字,图片已归一化为以手写数字为中心的32*32规格的图片。

DBRHD的训练集与测试 集组成如下:

                                                  训练集:7,494个手写体图片及对应标签,来源于40位手写者 

                                                  测试集:3,498个手写体图片及对应标签,来源于14位手写者

在手写数字识别的例子中_手写识别

在手写数字识别的例子中_手写识别

3.任务过程:

在手写数字识别的例子中_手写识别

①输入

在手写数字识别的例子中_手写识别

②输出

在手写数字识别的例子中_手写识别

③MPL的结构

在手写数字识别的例子中_手写识别

④步骤

在手写数字识别的例子中_手写识别

import numpy as np
#使用listdir模块,用于访问本地文件
from os import listdir
from sklearn.neural_network import MLPClassifier

Jetbrains全家桶1年46,售后保障稳定

#定义img2vector函数,将加载的3232 的图片矩阵展开成一列向量
def img2vector(fileName):
retMat =np.zeros([1024],int)
fr = open(fileName) #打开包含3232大小的数字文件
lines =fr.readlines() #读取文件的所有行
for i in range(32):
for j in range(32): #将01数字存放在retMat
retMat[i*32+j]=lines[i][j];
return retMat
#并将样本标签转化为one-hot向量
def readDataSet(path):
fileList =listdir(path) #获取文件夹下所有文件
numFiles =len(fileList) #统计需要读取的文件的数目
dataSet =np.zeros([numFiles,1024],int) #用于存放所有的数字文件
hwLabels =np.zeros([numFiles,10]) #用于存放对应的标签one-hot
for i in range(numFiles):
filePath =fileList[i] #获取文件名称/路径
digit =int(filePath.split(’_’)[0])
hwLabels[i][digit]=1.0
dataSet[i]=img2vector(path+’/’+filePath)#读取文件内容
return dataSet,hwLabels
train_dataSet,train_hwLabels =readDataSet(‘trainingDigits’)

#构建神经网络:设置网络的隐藏层数、各隐藏层神经元个数、
# 激活函数、学习率、优化方法、最大迭代次数。
#hidden_layer_sizes 存放的是一个元组,表示第i层隐藏层里神经元的个数
# 使用logistic激活函数和adam优化方法,并令初始学习率为0.0001
clf =MLPClassifier(hidden_layer_sizes=(50,),activation=‘logistic’,
solver=‘adam’,learning_rate_init=0.0001,max_iter=2000)
#fit函数能够根据训练集及对应标签集自动设置多层感知机的输入与输出层的神经元个数。
#例如train_dataSet为n1024的矩阵,train_hwLabels为n10的矩阵,
# 则fit函数将MLP的输入层神经元个数设为1024,输出层神经元个数为 10.
clf.fit(train_dataSet,train_hwLabels)

#测试集评价
dataSet,hwlLabels =readDataSet(‘testDigits’)
res=clf.predict(dataSet) #对测试集进行预测
error_num =0 #统计预测错误的数目
num =len(dataSet) #测试集的数目
for i in range(num):
#比较长度为10的数组,返回包含01的数组,0为不同,1为相同
if np.sum(res[i]==hwlLabels[i])<10:
error_num+=1
print(“Total num:”,num,“Wrong num:”,error_num,” WrongRate:”,error_num/float(num))

实验效果:

以下结果为课程结果,我自己实验的结果与这个结果相差不大。

在手写数字识别的例子中_手写识别

在手写数字识别的例子中_手写识别

在手写数字识别的例子中_手写识别

2.使用KNN分类器识别数据集DBRHD的手写数字(内容与上面差不多,只是使用算法有些差别)

在手写数字识别的例子中_手写识别

在手写数字识别的例子中_手写识别

import numpy as np
#使用listdir模块,用于访问本地文件
from os import listdir
from sklearn import neighbors

#定义img2vector函数,将加载的3232 的图片矩阵展开成一列向量
def img2vector(fileName):
retMat =np.zeros([1024],int)
fr = open(fileName) #打开包含3232大小的数字文件
lines =fr.readlines() #读取文件的所有行
for i in range(32):
for j in range(32): #将01数字存放在retMat
retMat[i*32+j]=lines[i][j];
return retMat
#并将样本标签转化为one-hot向量
def readDataSet(path):
fileList =listdir(path) #获取文件夹下所有文件
numFiles =len(fileList) #统计需要读取的文件的数目
dataSet =np.zeros([numFiles,1024],int) #用于存放所有的数字文件
hwLabels =np.zeros([numFiles,10]) #用于存放对应的标签one-hot
for i in range(numFiles):
filePath =fileList[i] #获取文件名称/路径
digit =int(filePath.split(’_’)[0])
hwLabels[i][digit]=1.0
dataSet[i]=img2vector(path+’/’+filePath)#读取文件内容
return dataSet,hwLabels
train_dataSet,train_hwLabels =readDataSet(‘trainingDigits’)
#构建KNN分类器:设置查找算法以及邻居点 数量(k)值。
#KNN是一种懒惰学习法,没有学习过程,只在预测时去查找最近邻的点,
#数据集的输入就是构建KNN分类器的过程
knn =neighbors.KNeighborsClassifier(algorithm=‘kd_tree’,n_neighbors=3)
knn.fit(train_dataSet,train_hwLabels)

#测试集评价
dataSet,hwlLabels =readDataSet(‘testDigits’)
res=knn.predict(dataSet) #对测试集进行预测
error_num =np.sum(res!=hwlLabels) #统计预测错误的数目
num =len(dataSet) #测试集的数目

print(“Total num:”,num,“Wrong num:”,error_num,” WrongRate:”,error_num/float(num))

实验结果(同上)

在手写数字识别的例子中_手写识别

在手写数字识别的例子中_手写识别

在手写数字识别的例子中_手写识别

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/234904.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

  • java最简单最全入门基础笔记(不简单,不全你打我)「建议收藏」

    java最简单最全入门基础笔记(不简单,不全你打我)「建议收藏」刚开始学习java的时候,可能是一头雾水,不知道从何学起,这里跟大家分享一下!(仅仅只供初级学者学习,大佬勿喷)一、初始java1.生活中的程序:从起床到教室上课的过程穿衣打扮》起床》洗漱》出宿舍》》吃早餐》到教室按照特定的顺序去完成某一件事的过程我们叫做生活中的程序2.计算机中的程序:一组有序指令的集合,需要和计算机交流就要使用计算机语言,java就是计算机语言的一种3.java…

  • 数据挖掘的预测建模_数据挖掘建模培训

    数据挖掘的预测建模_数据挖掘建模培训数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。听起来比较抽象,我们举个例子。傍晚小街路面上沁出微雨后的湿润,和煦的细风吹来,抬头看看天边的晚霞,嗯,明天又是一个好天气。走到水果摊旁,挑了个根蒂蜷缩、敲起来声音浊响的青绿西瓜,心里期待着享受这个好瓜。由路面微湿、微风、晚霞得出明天是个好天气。根蒂蜷缩、敲声浊响、色泽青绿推断出这是个好瓜,显然,我们是根据以往的经验来对未来或未知的事物做出预测。人可以根据经验对未来进行

  • select top 的用法

    select top 的用法selecttop1*from员工orderby编号select*from员工orderby编号select*from员工where编号likeYG%orderby编号descselectTOP1*from员工where编号likeYG%orderby编号desc

  • MATLAB–相机标定教程

    MATLAB–相机标定教程对相机标定原理不熟悉的同学可以参考张正友标记法的译文MATLAB:2014a待标记图像:http://download.csdn.net/detail/heroacool/9477530应用程序下找到CameraCalibration工具箱加载待标定的图像填写棋盘格每个格子边长的真实值可以预览成功检测出棋盘格的图像,然后开始标定,点击Calibrate平均误差小于0.5即可导出相机

  • 详解HTML超链接

    详解HTML超链接超链接是互联网提供的最令人兴奋的创新之一,它们从一开始就一直是互联网的一个特性,使互联网成为互联的网络。HTML超链接也是各个网站网页之间实现相互连接的一个手段之一,被广泛应用在各大网站。HTML超

  • 虚拟机配置DNS服务器「建议收藏」

    虚拟机配置DNS服务器「建议收藏」虚拟机配置DNS服务DNS简介下面演示如何通过虚拟机安装DNS服务器windows2003(DNS服务端)安装DNS服务客户端做相应配置回到windows2003新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML图表FLowchart流程图导出与导入导出导入DNS简介

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号