行列式及其运算和性质[通俗易懂]

行列式及其运算和性质[通俗易懂]行列式特别注意,行列式虽然表达为一系列数字的数表,但是其本质式一个数,这个跟矩阵有本质的区别.二阶行列式D=∣a11a12a21a22∣=a11a22−a12a21D=\begin{vmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{vmatrix}=a_{11}a_{22}-a_{12}a_{21}D=∣∣∣∣​a11​a21​​a12​a22​​∣∣∣∣​=a11​a22​−a12​a21​三阶行列式D=∣a11a12a13a21a2

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全家桶1年46,售后保障稳定

行列式

特别注意,行列式虽然表达为一系列数字的数表,但是其本质式一个数,这个跟矩阵有本质的区别.

二阶行列式

D = ∣ a 11 a 12 a 21 a 22 ∣ = a 11 a 22 − a 12 a 21 D= \begin{vmatrix} a_{11}&a_{12}\\ a_{21}&a_{22} \end{vmatrix} =a_{11}a_{22}-a_{12}a_{21} D=a11a21a12a22=a11a22a12a21

三阶行列式

D = ∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣   = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 − a 13 a 22 a 31 − a 11 a 23 a 32 − a 12 a 21 a 33 D= \begin{vmatrix} a_{11}&a_{12}&a_{13}\\ a_{21}&a_{22}&a_{23}\\ a_{31}&a_{32}&a_{33} \end{vmatrix}\\ \space\\ =a_{11}a_{22}a_{33}+a_{12}a_{23}a_{31}+a_{13}a_{21}a_{32}\\-a_{13}a_{22}a_{31}-a_{11}a_{23}a_{32}-a_{12}a_{21}a_{33} D=a11a21a31a12a22a32a13a23a33 =a11a22a33+a12a23a31+a13a21a32a13a22a31a11a23a32a12a21a33

全排列与逆序数

全排列(排列):把n个元数排成一排,就叫做这n个数全排列(也称排列)

标准排列:先规定n个元素的一个先后次序标准,称这个排列为标准排列

逆序数:当排列中的两个元素的先后顺序与标准排列的先后顺序不同时,则元素有1个逆序,一个排列所有逆序之和则为逆序数

奇排列:逆序数为奇数的排列称为奇排列

偶排列:逆序数为偶数的排列称为偶排列

n阶行列式

n阶行列式:

D n = d e t ( a i j ) = ∣ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ D_n= det(a_{ij})= \begin{vmatrix} a_{11}&a_{12}&…&a_{1n}\\ a_{21}&a_{22}&…&a_{2n}\\ …&…&…&…\\ a_{n1}&a_{n2}&…&a_{nn} \end{vmatrix}\\ Dn=det(aij)=a11a21...an1a12a22...an2............a1na2n...ann

= ∑ ( j 1 , j 2 , j 3 . . . j n ) ( − 1 ) t ( j 1 , j 2 , j 3 . . . j n ) a 1 j a 2 j a 3 j . . . a n j =\sum_{(j_1,j_2,j_3…j_n)}(-1)^{t(j_1,j_2,j_3…j_n)}a_{1j}a_{2j}a_{3j}…a_{nj} =(j1,j2,j3...jn)(1)t(j1,j2,j3...jn)a1ja2ja3j...anj
其中: t ( j 1 , j 2 , j 3 . . . j n ) t(j_1,j_2,j_3…j_n) t(j1,j2,j3...jn) ( j 1 , j 2 , j 3 . . . j n ) (j_1,j_2,j_3…j_n) (j1,j2,j3...jn)的逆序数, ∑ ( j 1 , j 2 , j 3 . . . j n ) \displaystyle\sum_{(j_1,j_2,j_3…j_n)} (j1,j2,j3...jn)表示所有可能的n级排列之和
。行列式 D D D可以简记为 d e t ( a i j ) det(a_{ij}) det(aij),其中 a i j a_{ij} aij表示行列式 D D D ( i , j ) (i,j) (i,j)元。

行列式的性质

性质1:行列式与其转置行列式相等。

例如:
D = ∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ D= \begin{vmatrix} a_{11}&a_{12}&a_{13}\\ a_{21}&a_{22}&a_{23}\\ a_{31}&a_{32}&a_{33} \end{vmatrix}\\ D=a11a21a31a12a22a32a13a23a33
D T = ∣ a 11 a 21 a 31 a 12 a 22 a 32 a 13 a 23 a 33 ∣ D^T= \begin{vmatrix} a_{11}&a_{21}&a_{31}\\ a_{12}&a_{22}&a_{32}\\ a_{13}&a_{23}&a_{33} \end{vmatrix}\\ DT=a11a12a13a21a22a23a31a32a33
性质2:互换行列式的两行(列),行列式变号。

推论:行列式有两行(列)相同,则行列式等于0

证明:根据性质2,将两个相同行(列)互换,则有:

D = − D D=-D D=D
故: D = 0 D=0 D=0

性质3:行列式中的某一行(列)中所有的元素都乘以同一数 k k k,等于用数 k k k乘以此行列式。

例如:

D = ∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ k ∗ D = ∣ a 11 a 12 a 13 k a 21 k a 22 k a 23 a 31 a 32 a 33 ∣ = ∣ a 11 k a 12 a 13 a 21 k a 22 a 23 a 31 k a 32 a 33 ∣ D= \begin{vmatrix} a_{11}&a_{12}&a_{13}\\ a_{21}&a_{22}&a_{23}\\ a_{31}&a_{32}&a_{33} \end{vmatrix}\\ k*D= \begin{vmatrix} a_{11}&a_{12}&a_{13}\\ ka_{21}&ka_{22}&ka_{23}\\ a_{31}&a_{32}&a_{33} \end{vmatrix}= \begin{vmatrix} a_{11}&ka_{12}&a_{13}\\ a_{21}&ka_{22}&a_{23}\\ a_{31}&ka_{32}&a_{33} \end{vmatrix} D=a11a21a31a12a22a32a13a23a33kD=a11ka21a31a12ka22a32a13ka23a33=a11a21a31ka12ka22ka32a13a23a33

性质4:如果行列式中又两行(列)的元素成比例,则行列式等于0

性质5:如果行列式的某行(列)是两个数之和,如下:
D = ∣ a 11 a 12 . . . a 1 i + a 1 i ′ . . . a 1 n a 21 a 22 . . . a 2 i + a 2 i ′ . . . a 2 n . . . . . . . . . . . . . . . . . . a n 1 a n 2 . . . a n i + a n i ′ . . . a n n ∣ D= \begin{vmatrix} a_{11} & a_{12} & … & a_{1i}+a’_{1i} & … & a_{1n}\\ a_{21} & a_{22} & … & a_{2i}+a’_{2i} & … & a_{2n}\\ …&…&…&…&…&…\\ a_{n1} & a_{n2} & … & a_{ni}+a’_{ni} & … & a_{nn}\\ \end{vmatrix} D=a11a21...an1a12a22...an2............a1i+a1ia2i+a2i...ani+ani............a1na2n...ann
D D D等于一下两个行列式之和:
D = ∣ a 11 a 12 . . . a 1 i . . . a 1 n a 21 a 22 . . . a 2 i . . . a 2 n . . . . . . . . . . . . . . . . . . a n 1 a n 2 . . . a n i . . . a n n ∣ + ∣ a 11 a 12 . . . a 1 i ′ . . . a 1 n a 21 a 22 . . . a 2 i ′ . . . a 2 n . . . . . . . . . . . . . . . . . . a n 1 a n 2 . . . a n i ′ . . . a n n ∣ D= \begin{vmatrix} a_{11} & a_{12} & … & a_{1i} & … & a_{1n}\\ a_{21} & a_{22} & … & a_{2i} & … & a_{2n}\\ …&…&…&…&…&…\\ a_{n1} & a_{n2} & … & a_{ni} & … & a_{nn}\\ \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & … & a’_{1i} & … & a_{1n}\\ a_{21} & a_{22} & … & a’_{2i} & … & a_{2n}\\ …&…&…&…&…&…\\ a_{n1} & a_{n2} & … & a’_{ni} & … & a_{nn}\\ \end{vmatrix} D=a11a21...an1a12a22...an2............a1ia2i...ani............a1na2n...ann+a11a21...an1a12a22...an2............a1ia2i...ani............a1na2n...ann

性质6:将行列式的某一行(列)乘以同一数,然后加到另一行(列)对应的元素上去,行列式不变

∣ a 11 . . . a 1 i . . . a 1 j . . . a 1 n a 21 . . . a 2 i . . . a 2 j . . . a 2 n . . . . . . . . . . . . . . . . . . . . . a n 1 . . . a n i . . . a n j . . . a n n ∣ = ∣ a 11 . . . a 1 i + k a 1 j . . . a 1 j . . . a 1 n a 21 . . . a 2 i + k a 2 j . . . a 2 j . . . a 2 n . . . . . . . . . . . . . . . . . . . . . a n 1 . . . a n i + k a 3 j . . . a n j . . . a n n ∣ \begin{vmatrix} a_{11} & … & a_{1i} & … & a_{1j} & … & a_{1n}\\ a_{21} & … & a_{2i} & … & a_{2j} & … & a_{2n}\\ …&…&…&…&…&…&…\\ a_{n1} & … & a_{ni} & … & a_{nj} & … & a_{nn}\\ \end{vmatrix}= \begin{vmatrix} a_{11} & … & a_{1i}+ka_{1j} & … & a_{1j} & … & a_{1n}\\ a_{21} & … & a_{2i}+ka_{2j} & … & a_{2j} & … & a_{2n}\\ …&…&…&…&…&…&…\\ a_{n1} & … & a_{ni}+ka_{3j} & … & a_{nj} & … & a_{nn}\\ \end{vmatrix} a11a21...an1............a1ia2i...ani............a1ja2j...anj............a1na2n...ann=a11a21...an1............a1i+ka1ja2i+ka2j...ani+ka3j............a1ja2j...anj............a1na2n...ann
注意:性质6特别重要,基本所有的行列式变换都可以用改性质求得

克莱姆法则

如果有n元一次非齐次方程组:

{ a 11 x 1 + a 12 x 2 + a 13 x 3 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + a 23 x 3 + . . . + a 2 n x n = b 2 a 31 x 1 + a 32 x 2 + a 33 x 3 + . . . + a 3 n x n = b 3 . . . . . . a n 1 x 1 + a n 2 x 2 + a n 3 x 3 + . . . + a n n x n = b n (1) \tag{1} \begin{cases} a_{11}x_1+a_{12}x_2+a_{13}x_3+…+a_{1n}x_n=b_1\\ a_{21}x_1+a_{22}x_2+a_{23}x_3+…+a_{2n}x_n=b_2\\ a_{31}x_1+a_{32}x_2+a_{33}x_3+…+a_{3n}x_n=b_3\\ \kern{8em}……\\ a_{n1}x_1+a_{n2}x_2+a_{n3}x_3+…+a_{nn}x_n=b_n\\ \end{cases} a11x1+a12x2+a13x3+...+a1nxn=b1a21x1+a22x2+a23x3+...+a2nxn=b2a31x1+a32x2+a33x3+...+a3nxn=b3......an1x1+an2x2+an3x3+...+annxn=bn(1)
如果线性方程组 ( 1 ) (1) (1)的系数行列式:

D = ∣ a 11 a 12 a 13 . . . a 1 n a 21 a 22 a 23 . . . a 2 n a 31 a 32 a 33 . . . a 3 n . . . . . . . . . . . . . . . a n 1 a n 2 a n 3 . . . a n n ∣ D= \begin{vmatrix} a_{11} & a_{12} & a_{13} & … & a_{1n}\\ a_{21} & a_{22} & a_{23} & … & a_{2n}\\ a_{31} & a_{32} & a_{33} & … & a_{3n}\\ …&…&…&…&…\\ a_{n1} & a_{n2} & a_{n3} & … & a_{nn}\\ \end{vmatrix} D=a11a21a31...an1a12a22a32...an2a13a23a33...an3...............a1na2na3n...ann
如果 D D D不等于0,那么方程组有唯一解:

x 1 = D 1 D x 2 = D 2 D x 3 = D 3 D . . . . . . x n = D n D x_1=\dfrac{D_1}{D} \kern{1em} x_2=\dfrac{D_2}{D} \kern{1em} x_3=\dfrac{D_3}{D} \kern{1em} …… \kern{1em} x_n=\dfrac{D_n}{D} x1=DD1x2=DD2x3=DD3......xn=DDn
其中:
D 1 = ∣ b 1 a 12 a 13 . . . a 1 n b 2 a 22 a 23 . . . a 2 n b 3 a 32 a 33 . . . a 3 n . . . . . . . . . . . . . . . b n a n 2 a n 3 . . . a n n ∣   D 2 = ∣ a 11 b 1 a 13 . . . a 1 n a 21 b 2 a 23 . . . a 2 n a 31 b 3 a 33 . . . a 3 n . . . . . . . . . . . . . . . a n 1 b n a n 3 . . . a n n ∣ . . . . . . D j = ∣ a 11 a 12 a 13 a 1 ( j − 1 ) b 1 a 1 ( j + 1 ) . . . a 1 n a 21 a 22 a 23 a 2 ( j − 1 ) b 2 a 2 ( j + 1 ) . . . a 2 n a 31 a 32 a 33 a 3 ( j − 1 ) b 3 a 3 ( j + 1 ) . . . a 3 n . . . . . . . . . . . . . . . . . . . . . . . . a n 1 a n 2 a n 3 a n ( j − 1 ) b n a n ( j + 1 ) . . . a n n ∣ . . . . . . D n = ∣ a 11 a 12 a 13 . . . b 1 a 21 a 22 a 23 . . . b 2 a 31 a 32 a 33 . . . b 3 . . . . . . . . . . . . . . . a n 1 a n 2 a n 3 . . . b n ∣ D_1= \begin{vmatrix} b_1 & a_{12} & a_{13} & … & a_{1n}\\ b_2 & a_{22} & a_{23} & … & a_{2n}\\ b_3 & a_{32} & a_{33} & … & a_{3n}\\ …&…&…&…&…\\ b_n & a_{n2} & a_{n3} & … & a_{nn}\\ \end{vmatrix}\\ \space\\ D_2= \begin{vmatrix} a_{11} & b_1 & a_{13} & … & a_{1n}\\ a_{21} & b_2 & a_{23} & … & a_{2n}\\ a_{31} & b_3 & a_{33} & … & a_{3n}\\ …&…&…&…&…\\ a_{n1} & b_n & a_{n3} & … & a_{nn}\\ \end{vmatrix}\\ \kern{3em}……\\ D_j= \begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{1(j-1)} & b_1 & a_{1(j+1)} & … & a_{1n}\\ a_{21} & a_{22} & a_{23} & a_{2(j-1)} & b_2 & a_{2(j+1)} & … & a_{2n}\\ a_{31} & a_{32} & a_{33} & a_{3(j-1)} & b_3 & a_{3(j+1)} & … & a_{3n}\\ …&…&…&…&…&…&…&…\\ a_{n1} & a_{n2} & a_{n3} & a_{n(j-1)} & b_n & a_{n(j+1)} & … & a_{nn}\\ \end{vmatrix}\\ \kern{3em}\\ ……\\ D_n= \begin{vmatrix} a_{11} & a_{12} & a_{13} & … & b_1\\ a_{21} & a_{22} & a_{23} & … & b_2\\ a_{31} & a_{32} & a_{33} & … & b_3\\ …&…&…&…&…\\ a_{n1} & a_{n2} & a_{n3} & … & b_n\\ \end{vmatrix} D1=b1b2b3...bna12a22a32...an2a13a23a33...an3...............a1na2na3n...ann D2=a11a21a31...an1b1b2b3...bna13a23a33...an3...............a1na2na3n...ann......Dj=a11a21a31...an1a12a22a32...an2a13a23a33...an3a1(j1)a2(j1)a3(j1)...an(j1)b1b2b3...bna1(j+1)a2(j+1)a3(j+1)...an(j+1)...............a1na2na3n...ann......Dn=a11a21a31...an1a12a22a32...an2a13a23a33...an3...............b1b2b3...bn

行列式按行展开

余子式 : 去掉 n n n阶行列式中 a i j a_{ij} aij元素的行( i i i行)于列( j j j列),剩下的元素组成的新的行列式,则为元 a i j a_{ij} aij的余子式,记做 M i j M_{ij} Mij,记
A i j = ( − 1 ) i + j M i j A_{ij} = (-1)^{i+j}M_{ij} Aij=(1)i+jMij
为元 a i j a_{ij} aij代数余子式

i i i行(列)展开
D n = d e t ( a i j ) = ∣ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ = ∑ j = 1 n a i j A i j i ∈ ( 1 , 2 , . . . , n ) D_n= det(a_{ij})= \begin{vmatrix} a_{11}&a_{12}&…&a_{1n}\\ a_{21}&a_{22}&…&a_{2n}\\ …&…&…&…\\ a_{n1}&a_{n2}&…&a_{nn} \end{vmatrix}=\sum_{j=1}^{n}a_{ij}A_{ij} \kern{2em} i \isin (1,2,…,n) Dn=det(aij)=a11a21...an1a12a22...an2............a1na2n...ann=j=1naijAiji(1,2,...,n)

拉普拉斯展开

行列式选中的某 k k k行(列)的所有 k k k阶子式,与其代数余子式的乘积之和等于行列式本身

范德蒙德行列式

形如:
D = ∣ 1 1 . . . 1 x 1 x 2 . . . x n x 1 2 x 2 2 . . . x n 2 . . . . . . . . . . . . x 1 n − 1 x 2 n − 1 . . . x n n − 1 ∣ = Π n ≥ i ≥ j ≥ 1 ( x i − x j ) D= \begin{vmatrix} 1 & 1 & … & 1\\ x_1 & x_2 & … & x_n\\ x_1^2 & x_2^2 & … & x_n^2\\ … & … & … & …\\ x_1^{n-1} & x_2^{n-1} & … & x_n^{n-1}\\ \end{vmatrix}=\Pi_{n \ge i \ge j \ge 1}(x_i-x_j) D=1x1x12...x1n11x2x22...x2n1...............1xnxn2...xnn1=Πnij1(xixj)

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/234781.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号