大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。
Jetbrains全家桶1年46,售后保障稳定
The Eigenvalues and Eigenvectors of Tridiagonal Toeplitz Matrix
by Changyu Zhou
Abstract
Usually, the eigenvalues are calculated first, then are the eigenvectors. But for a special kind of matrix: Tridiagonal Toeplitz Matrix, the eigenvectors will be found at first. Want to know how? Keep reading!
Details
We investigate a special kind of n × n \,\small n\times n n×n real matrix——Tridiagonal Toeplitz Matrix:
M = ( a b c ⋱ ⋱ ⋱ a b c a ) n × n ( b , c ≠ 0 ) M= \begin{pmatrix} \,\,a & \,\,b & & \\ \,\,c & \ddots & \ddots & \\ & \ddots & \,\,a & \,\,b\,\, \\ & & \,\,c & \,\,a\,\, \end{pmatrix}_{n\times n}\quad (b,c\neq 0) M=⎝⎜⎜⎛acb⋱⋱⋱acba⎠⎟⎟⎞n×n(b,c=0)
Before dealing with this kind of matrix, let’s look a simpler one, which is symmetric as follow:
M 1 = ( a b b ⋱ ⋱ ⋱ a b b a ) = a I + b T 1 ( b ≠ 0 ) M_1= \begin{pmatrix} \,\,a & \,\,b & & \\ \,\,b & \ddots & \ddots & \\ & \ddots & \,\,a & \,\,b\,\, \\ & & \,\,b & \,\,a\,\, \end{pmatrix} =aI+b\,T_1\quad (b\neq 0) M1=⎝⎜⎜⎛abb⋱⋱⋱abba⎠⎟⎟⎞=aI+bT1(b=0)
with
T 1 = ( 0 1 1 ⋱ ⋱ ⋱ 0 1 1 0 ) T_1= \begin{pmatrix} \,\,0 & \,\,1 & & \\ \,\,1 & \ddots & \ddots & \\ & \ddots & \,\,0 & \,\,1\,\, \\ & & \,\,1 & \,\,0\,\, \end{pmatrix} T1=⎝⎜⎜⎛011⋱⋱⋱0110⎠⎟⎟⎞
We can know that if λ \small \lambda λ and v \small v v satisfy
M 1 v = λ v , v ≠ 0 M_1v=\lambda v,\quad v\neq 0 M1v=λv,v=0
It can be inferred that
M 1 v = ( a I + b T 1 ) v = a v + b T 1 v = λ v M_1v=(aI+b\,T_1)v=av+b\,T_1v=\lambda v M1v=(aI+bT1)v=av+bT1v=λv
after simplifying,
T 1 v = λ − a b v T_1v=\frac{\lambda-a}{b}v T1v=bλ−av
so λ ′ = λ − a b \small \displaystyle \lambda’=\frac{\lambda-a}{b} λ′=bλ−a is the eigenvalue of T 1 \,\small T_1 T1.
Similarly, if λ ′ \small \lambda’ λ′ is the eigenvalue of T 1 \,\small T_1 T1, then λ ′ b + a \small \lambda’b+a λ′b+a is the eigenvalue of M 1 \small M_1 M1.
In other words, M 1 \small M_1 M1 and T 1 \small T_1 T1 have the same eigenvectors and their respective eigenvalues are related.
So, to find M 1 \small M_1 M1‘s eigenvectors and eigenvalues, it is sufficient to focus on the solution of the simpler matrix T 1 \small T_1 T1‘s eigenvectors and eigenvalues.
Usually, the eigenvalues are calculated first, then are the eigenvectors. But for T 1 \small T_1 T1, it is simpler to first find the eigenvectors. Assume that λ \small \lambda λ is T 1 \small T_1 T1‘s eigenvalue and v v v is the corresponding eigenvector. With hindsight, it’s convenient to write λ = 2 c \small \lambda =2c λ=2c, then
( T − λ I ) v = ( − 2 c 1 1 ⋱ ⋱ ⋱ − 2 c 1 1 − 2 c ) ( v 1 v 2 ⋮ v n − 1 v n ) = ( − 2 c v 1 + v 2 v 1 − 2 c v 2 + v 3 ⋮ v n − 2 − 2 c v n − 1 + v n v n − 1 − 2 c v n ) = 0 (T-\lambda I)v= \begin{pmatrix} \,\,-2c & \,\,1 & & \\ \,\,1 & \ddots & \ddots & \\ & \ddots & \,\,-2c & \,\,1\,\, \\ & & \,\,1 & \,\,-2c\,\, \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_{n-1} \\ v_n \end{pmatrix}= \begin{pmatrix} -2cv_1+v_2 \\ v_1-2cv_2+v_3 \\ \vdots \\ v_{n-2}-2cv_{n-1}+v_n \\ v_{n-1}-2cv_n \end{pmatrix} =0 (T−λI)v=⎝⎜⎜⎛−2c11⋱⋱⋱−2c11−2c⎠⎟⎟⎞⎝⎜⎜⎜⎜⎜⎛v1v2⋮vn−1vn⎠⎟⎟⎟⎟⎟⎞=⎝⎜⎜⎜⎜⎜⎛−2cv1+v2v1−2cv2+v3⋮vn−2−2cvn−1+vnvn−1−2cvn⎠⎟⎟⎟⎟⎟⎞=0
By introducing v 0 = 0 , v n + 1 = 0 \small v_0=0,v_{n+1}=0 v0=0,vn+1=0, the forms come into the same:
v k − 1 − 2 c v k + v k + 1 = 0 , k = 1 , 2 , ⋯ , n v_{k-1}-2cv_k+v_{k+1}=0,k=1,2,\cdots,n vk−1−2cvk+vk+1=0,k=1,2,⋯,n
v k + 1 = 2 c v k − v k − 1 v_{k+1}=2cv_k-v_{k-1} vk+1=2cvk−vk−1
two sides subtract r v k \small rv_k rvk
v k + 1 − r v k = ( 2 c − r ) v k − v k − 1 v_{k+1}-rv_k=(2c-r)v_k-v_{k-1} vk+1−rvk=(2c−r)vk−vk−1
Let a k = v k + 1 − r v k \small a_k=v_{k+1}-rv_k ak=vk+1−rvk, to form a geometric progression { a k } \small \{a_k\} {
ak}, the coefficents must satisfy
1 : 2 c − r = − r : − 1 1:2c-r=-r:-1 1:2c−r=−r:−1
that’s to say,
r 2 − 2 c r + 1 = 0 r^2-2cr+1=0 r2−2cr+1=0
Denote two roots as r 1 , r 2 \small r_1,r_2 r1,r2, there are
r 1 + r 2 = 2 c , r 1 r 2 = 1 r_1+r_2=2c,r_1r_2=1 r1+r2=2c,r1r2=1
It can be induced that if r 1 ≠ r 2 \small r_1\neq r_2 r1=r2, or in other words, c 2 − 1 ≠ 0 \small c^2-1\neq 0 c2−1=0,
v k = c 1 r 1 k + c 2 r 2 k v_k=c_1r_1^k+c_2r_2^k vk=c1r1k+c2r2k
If r 1 = r 2 = r \small r_1=r_2=r r1=r2=r,
v k = ( c 1 + c 2 k ) r k v_k=(c_1+c_2k)r^k vk=(c1+c2k)rk
with c 1 \small c_1 c1 and c 2 \small c_2 c2 are constants.
In the first case,
v k = c 1 r 1 k + c 2 r 2 k v_k=c_1r_1^k+c_2r_2^k vk=c1r1k+c2r2k
v 0 = c 1 + c 2 = 0 v_0=c_1+c_2=0 v0=c1+c2=0
then,
v k = c 1 ( r 1 k − r 2 k ) v_k=c_1(r_1^k-r_2^k) vk=c1(r1k−r2k)
v n + 1 = c 1 ( r 1 n + 1 − r 2 n + 1 ) = 0 v_{n+1}=c_1(r_1^{n+1}-r_2^{n+1})=0 vn+1=c1(r1n+1−r2n+1)=0
Since v ≠ 0 \small v\neq 0 v=0,
r 1 n + 1 = r 2 n + 1 = r 1 − n − 1 ⇒ r 1 2 ( n + 1 ) = 1 r_1^{n+1}=r_2^{n+1}=r_1^{-n-1} \Rightarrow r_1^{2(n+1)}=1 r1n+1=r2n+1=r1−n−1⇒r12(n+1)=1
so ∣ r 1 ∣ = 1 \small |r_1|=1 ∣r1∣=1, denote r 1 \small r_1 r1 as e i θ \small e^{i\theta} eiθ, we have
v k = c 1 ( e i k θ − e − i k θ ) = 2 c 1 i sin ( k θ ) v_k=c_1(e^{ik\theta}-e^{-ik\theta})=2c_1i\sin(k\theta) vk=c1(eikθ−e−ikθ)=2c1isin(kθ) e i 2 ( n + 1 ) θ = 1 = e i 2 j π e^{i2(n+1)\theta}=1=e^{i2j\pi} ei2(n+1)θ=1=ei2jπ
Since v k ≠ 0 \small v_k\neq 0 vk=0, it can be inferred k θ ≠ 2 m π , m ∈ Z \small k\theta\neq 2m\pi,m\in Z kθ=2mπ,m∈Z, therefore j ≠ 0 , n + 1 \small j\neq 0, n+1 j=0,n+1,
θ j = j π n + 1 , j = 1 , 2 , ⋯ , n \theta_j=\frac{j\pi}{n+1},j=1,2,\cdots,n θj=n+1jπ,j=1,2,⋯,n
Let c 1 = 1 / 2 i \small c_1=1/2i c1=1/2i, then
v k = sin ( k θ j ) v_k=\sin(k\theta_j) vk=sin(kθj)
V j = ( sin ( θ j ) sin ( 2 θ j ) ⋮ sin ( ( n − 1 ) θ j ) sin ( n θ j ) ) V_j= \begin{pmatrix} \sin(\theta_j) \\ \sin(2\theta_j) \\ \vdots \\ \sin\big((n-1)\theta_j\big) \\ \sin(n\theta_j) \\ \end{pmatrix} Vj=⎝⎜⎜⎜⎜⎜⎛sin(θj)sin(2θj)⋮sin((n−1)θj)sin(nθj)⎠⎟⎟⎟⎟⎟⎞
corresponding eigenvalue is
λ j = 2 c = r 1 + r 2 = e i θ j + e − i θ j = 2 cos ( θ j ) \lambda_j=2c=r_1+r_2=e^{i\theta_j}+e^{-i\theta_j}=2\cos(\theta_j) λj=2c=r1+r2=eiθj+e−iθj=2cos(θj)
with
θ j = j π n + 1 , j = 1 , 2 , ⋯ , n \theta_j=\frac{j\pi}{n+1},j=1,2,\cdots,n θj=n+1jπ,j=1,2,⋯,n
As for the second case: r 1 = r 2 = r = c \small r_1=r_2=r=c r1=r2=r=c,
v k = ( c 1 + c 2 k ) r k ⇒ v 0 = c 1 = 0 ⇒ v k = c 2 k r k ⇒ v n + 1 = c 2 ( n + 1 ) r n + 1 = 0 \begin{aligned} &\quad \,\,\,v_k=(c_1+c_2k)r^k\\& \Rightarrow v_0=c_1=0\\& \Rightarrow v_k=c_2kr^k\\& \Rightarrow v_{n+1}=c_2(n+1)r^{n+1}=0 \end{aligned} vk=(c1+c2k)rk⇒v0=c1=0⇒vk=c2krk⇒vn+1=c2(n+1)rn+1=0
then
c 2 = 0 ⇒ v k = 0 ⇒ v = 0 c_2=0 \Rightarrow v_k=0 \Rightarrow v=0 c2=0⇒vk=0⇒v=0
which is not consistent with v ≠ 0 \small v\neq 0 v=0.
So the eigenvalues of T 1 \,\small T_1 T1 are
λ j = 2 cos ( j π n + 1 ) , j = 1 , 2 , ⋯ , n \lambda_j=2\cos(\frac{j\pi}{n+1}),j=1,2,\cdots,n λj=2cos(n+1jπ),j=1,2,⋯,n
with corresponding eigenvectors
V j = ( sin ( 1 n + 1 j π ) sin ( 2 n + 1 j π ) ⋮ sin ( n − 1 n + 1 j π ) sin ( n n + 1 j π ) ) V_j= \begin{pmatrix} \sin(\displaystyle\frac{1}{n+1}j\pi) \\\\ \sin(\displaystyle\frac{2}{n+1}j\pi) \\ \vdots \\ \sin(\displaystyle\frac{n-1}{n+1}j\pi) \\\\ \sin(\displaystyle\frac{n}{n+1}j\pi) \\ \end{pmatrix} Vj=⎝⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎛sin(n+11jπ)sin(n+12jπ)⋮sin(n+1n−1jπ)sin(n+1njπ)⎠⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎞
It can be easily proved that V i T V j = 0 , i ≠ j . \,\footnotesize V_i^TV_j=0,i\neq j. ViTVj=0,i=j. (Hint: using Euler’s formula)
Let V = ( V 1 , V 2 , ⋯ , V n ) , D = d i a g ( λ 1 , λ 2 , ⋯ , λ n ) \small V=(V_1,V_2,\cdots,V_n), D=diag(\lambda_1,\lambda_2,\cdots,\lambda_n) V=(V1,V2,⋯,Vn),D=diag(λ1,λ2,⋯,λn), we have
T 1 V = V D o r V − 1 T 1 V = D T_1V=VD \quad or \quad V^{-1}T_1V=D T1V=VDorV−1T1V=D
Therefore, the eigenvalues of M 1 \small M_1 M1 are
λ j = a + 2 b cos ( j π n + 1 ) , j = 1 , 2 , ⋯ , n \lambda_j=a+2b\cos(\frac{j\pi}{n+1}),j=1,2,\cdots,n λj=a+2bcos(n+1jπ),j=1,2,⋯,n
the eigenvectors are the same as those of T 1 \small \,T_1 T1.
At the moment, story just comes into the half.
Construct M 2 \small M_2 M2 as follow:
M 2 = ( a b − b ⋱ ⋱ ⋱ a b − b a ) n × n = a I + b T 2 ( b ≠ 0 ) M_2= \begin{pmatrix} \,\,a & \,\,b & & \\ \,-b & \ddots & \ddots & \\ & \ddots & \,\,a & \,\,b\,\, \\ & & \,-b & \,\,a\,\, \end{pmatrix}_{n\times n} =a\,I+b\,T_2\quad (b\neq 0) M2=⎝⎜⎜⎛a−bb⋱⋱⋱a−bba⎠⎟⎟⎞n×n=aI+bT2(b=0)
T 2 = ( 0 1 − 1 ⋱ ⋱ ⋱ 0 1 − 1 0 ) T_2= \begin{pmatrix} \,\,0 & \,\,1 & & \\ \,-1 & \ddots & \ddots & \\ & \ddots & \,\,0 & \,\,1\,\, \\ & & \,-1 & \,\,0\,\, \end{pmatrix} T2=⎝⎜⎜⎛0−11⋱⋱⋱0−110⎠⎟⎟⎞
The eigenvalues of T 2 \small T_2 T2 can be found in the same way.
λ j = 2 i cos ( j π n + 1 ) , j = 1 , 2 , ⋯ , n \lambda_j=2i\cos(\frac{j\pi}{n+1}),j=1,2,\cdots,n λj=2icos(n+1jπ),j=1,2,⋯,n
so the eigenvalues of M 2 \small M_2 M2 are
λ j = a + i 2 b cos ( j π n + 1 ) , j = 1 , 2 , ⋯ , n \lambda_j=a+i\,2b\cos(\frac{j\pi}{n+1}),j=1,2,\cdots,n λj=a+i2bcos(n+1jπ),j=1,2,⋯,n
At last, consider
M = ( a b c ⋱ ⋱ ⋱ a b c a ) ( b , c ≠ 0 ) = c ( 0 1 ⋱ ⋱ 0 1 0 ) + b ( 0 1 ⋱ ⋱ 0 1 0 ) + a I \begin{aligned} M&= \begin{pmatrix} \,\,a & \,\,b & & \\ \,\,c & \ddots & \ddots & \\ & \ddots & \,\,a & \,\,b\,\, \\ & & \,\,c & \,\,a\,\, \end{pmatrix}\quad (b,c\neq 0)\\&= c \begin{pmatrix} \,\,0 & \,\, & & \\ \,\,1 & \ddots & & \\ & \ddots & \,\,0 & \,\,\,\, \\ & & \,\,1 & \,\,0\,\, \end{pmatrix} +b \begin{pmatrix} \,\,0 & \,\,1 & & \\ \,\, & \ddots & \ddots & \\ & & \,\,0 & \,\,1\,\, \\ & & \,\, & \,\,0\,\, \end{pmatrix}+aI \end{aligned} M=⎝⎜⎜⎛acb⋱⋱⋱acba⎠⎟⎟⎞(b,c=0)=c⎝⎜⎜⎛01⋱⋱010⎠⎟⎟⎞+b⎝⎜⎜⎛01⋱⋱010⎠⎟⎟⎞+aI
Let
S = d i a g ( 1 , ( ∣ b ∣ ∣ c ∣ ) 1 / 2 , ⋯ , ( ∣ b ∣ ∣ c ∣ ) ( n − 1 ) / 2 ) = ( 1 ( ∣ b ∣ ∣ c ∣ ) 1 / 2 ⋱ ( ∣ b ∣ ∣ c ∣ ) ( n − 1 ) / 2 ) n × n S=diag\Big(1,(\displaystyle\frac{|b|}{|c|})^{1/2},\cdots,(\displaystyle\frac{|b|}{|c|})^{(n-1)/2}\Big)= \begin{pmatrix} \,\,1 & & & \\ & (\displaystyle\frac{|b|}{|c|})^{1/2} & & \\ & & \ddots & \\ & & \,\, &(\displaystyle\frac{|b|}{|c|})^{(n-1)/2} \end{pmatrix}_{n\times n} S=diag(1,(∣c∣∣b∣)1/2,⋯,(∣c∣∣b∣)(n−1)/2)=⎝⎜⎜⎜⎜⎜⎜⎛1(∣c∣∣b∣)1/2⋱(∣c∣∣b∣)(n−1)/2⎠⎟⎟⎟⎟⎟⎟⎞n×n
then
S − 1 = d i a g ( 1 , ( ∣ c ∣ ∣ b ∣ ) 1 / 2 , ⋯ , ( ∣ c ∣ ∣ b ∣ ) ( n − 1 ) / 2 ) = ( 1 ( ∣ c ∣ ∣ b ∣ ) 1 / 2 ⋱ ( ∣ c ∣ ∣ b ∣ ) ( n − 1 ) / 2 ) n × n S^{-1} =diag\Big(1,(\displaystyle\frac{|c|}{|b|})^{1/2},\cdots,(\displaystyle\frac{|c|}{|b|})^{(n-1)/2}\Big)= \begin{pmatrix} \,\,1 & & & \\ & (\displaystyle\frac{|c|}{|b|})^{1/2} & & \\ & & \ddots & \\ & & \,\, &(\displaystyle\frac{|c|}{|b|})^{(n-1)/2} \end{pmatrix}_{n\times n} S−1=diag(1,(∣b∣∣c∣)1/2,⋯,(∣b∣∣c∣)(n−1)/2)=⎝⎜⎜⎜⎜⎜⎜⎛1(∣b∣∣c∣)1/2⋱(∣b∣∣c∣)(n−1)/2⎠⎟⎟⎟⎟⎟⎟⎞n×n
therefore
S M S − 1 = c S ( 0 1 ⋱ ⋱ 0 1 0 ) S − 1 + b S ( 0 1 ⋱ ⋱ 0 1 0 ) S − 1 + a S I S − 1 = c ( 0 ( ∣ b ∣ ∣ c ∣ ) 1 / 2 ⋱ ⋱ 0 ( ∣ b ∣ ∣ c ∣ ) 1 / 2 0 ) + b ( 0 ( ∣ c ∣ ∣ b ∣ ) 1 / 2 ⋱ ⋱ 0 ( ∣ c ∣ ∣ b ∣ ) 1 / 2 0 ) + a I = sgn ( c ) ∣ b c ∣ ( 0 1 ⋱ ⋱ 0 1 0 ) + sgn ( b ) ∣ b c ∣ ( 0 1 ⋱ ⋱ 0 1 0 ) + a I \begin{aligned} SMS^{-1}&=cS \begin{pmatrix} \,\,0 & & & \\ \,\,1 & \ddots & & \\ & \ddots & \,\,0 & \\ & & \,\,1 & \,\,0\,\, \end{pmatrix} S^{-1}+bS \begin{pmatrix} \,\,0 & \,\,1 & & \\ & \ddots & \ddots & \\ & & \,\,0 & \,\,1\,\, \\ & & & \,\,0\,\, \end{pmatrix} S^{-1}+aSIS^{-1} \\\\&= c \begin{pmatrix} \,\,0 & & & \\ (\displaystyle\frac{|b|}{|c|})^{1/2} & \ddots & & \\ & \ddots & \,\,0 & \\ & & (\displaystyle\frac{|b|}{|c|})^{1/2} & \,\,0\,\, \end{pmatrix} +b \begin{pmatrix} \,\,0 & (\displaystyle\frac{|c|}{|b|})^{1/2} & & \\ \\ & \ddots & \ddots & \\ & & \,\,0 & (\displaystyle\frac{|c|}{|b|})^{1/2} \\ \\ & & & \,\,0\,\, \end{pmatrix} +aI\\\\&= \textrm{sgn}(c)\sqrt{|bc|} \begin{pmatrix} \,\,0 & & & \\ \,\,1 & \ddots & & \\ & \ddots & \,\,0 & \\ & & \,\,1 & \,\,0\,\, \end{pmatrix}+ \textrm{sgn}(b)\sqrt{|bc|} \begin{pmatrix} \,\,0 & \,\,1 & & \\ & \ddots & \ddots & \\ & & \,\,0 & \,\,1\,\, \\ & & & \,\,0\,\, \end{pmatrix}+aI \end{aligned} SMS−1=cS⎝⎜⎜⎛01⋱⋱010⎠⎟⎟⎞S−1+bS⎝⎜⎜⎛01⋱⋱010⎠⎟⎟⎞S−1+aSIS−1=c⎝⎜⎜⎜⎜⎜⎜⎛0(∣c∣∣b∣)1/2⋱⋱0(∣c∣∣b∣)1/20⎠⎟⎟⎟⎟⎟⎟⎞+b⎝⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎛0(∣b∣∣c∣)1/2⋱⋱0(∣b∣∣c∣)1/20⎠⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎞+aI=sgn(c)∣bc∣⎝⎜⎜⎛01⋱⋱010⎠⎟⎟⎞+sgn(b)∣bc∣⎝⎜⎜⎛01⋱⋱010⎠⎟⎟⎞+aI
If sgn ( b ) = sgn ( c ) \small \textrm{sgn}(b)=\textrm{sgn}(c) sgn(b)=sgn(c), then
M 3 = S M S − 1 = a I + sgn ( b ) b c ( 0 1 1 ⋱ ⋱ ⋱ 0 1 1 0 ) = a I + sgn ( b ) b c T 1 M_3=SMS^{-1}=aI+\textrm{sgn}(b)\sqrt{bc} \begin{pmatrix} \,\,0 & \,\,1 & & \\ \,\,1 & \ddots & \ddots & \\ & \ddots & \,\,0 & \,\,1\,\, \\ & & \,\,1 & \,\,0\,\, \end{pmatrix}= aI+\textrm{sgn}(b)\sqrt{bc}\,T_1 M3=SMS−1=aI+sgn(b)bc⎝⎜⎜⎛011⋱⋱⋱0110⎠⎟⎟⎞=aI+sgn(b)bcT1
so M ∼ M 3 \small M \thicksim M_3 M∼M3, the eigenvalues of M \small M M are the same as the those of M 3 \small M_3 M3.
According to the former part, the eigenvalues of M 3 \small M_3 M3 are
λ j = a + 2 sgn ( b ) b c cos ( j π n + 1 ) , j = 1 , 2 , ⋯ , n \lambda_j=a+2\,\textrm{sgn}(b)\sqrt{bc}\cos(\frac{j\pi}{n+1}),j=1,2,\cdots,n λj=a+2sgn(b)bccos(n+1jπ),j=1,2,⋯,n
If sgn ( b ) = − sgn ( c ) \small \textrm{sgn}(b)=-\textrm{sgn}(c) sgn(b)=−sgn(c), then
M 4 = S M S − 1 = a I + sgn ( b ) − b c ( 0 1 − 1 ⋱ ⋱ ⋱ 0 1 − 1 0 ) = a I + sgn ( b ) − b c T 2 M_4=SMS^{-1}=aI+\textrm{sgn}(b)\sqrt{-bc} \begin{pmatrix} \,\,0 & \,\,1 & & \\ \,-1 & \ddots & \ddots & \\ & \ddots & \,\,0 & \,\,1\,\, \\ & & \,-1 & \,\,0\,\, \end{pmatrix} =aI+\textrm{sgn}(b)\sqrt{-bc}\,T_2 M4=SMS−1=aI+sgn(b)−bc⎝⎜⎜⎛0−11⋱⋱⋱0−110⎠⎟⎟⎞=aI+sgn(b)−bcT2
so M ∼ M 4 \small M \thicksim M_4 M∼M4, the eigenvalues of M \small M M are the same as the those of M 4 \small M_4 M4.
λ j = a + i 2 sgn ( b ) − b c cos ( j π n + 1 ) , j = 1 , 2 , ⋯ , n \lambda_j=a+i\,2\,\textrm{sgn}(b)\sqrt{-bc}\cos(\frac{j\pi}{n+1}),j=1,2,\cdots,n λj=a+i2sgn(b)−bccos(n+1jπ),j=1,2,⋯,n
The corresponding eigenvectors can be found by solving
( M − λ j I ) v = 0 (M-\lambda_jI)v=0 (M−λjI)v=0
Acknowledgements
Thank Mr. Yang for providing me with some useful materials about Tridiagonal Matrix[1].
References
[1]. https://www.math.upenn.edu/~kazdan/AMCS602/tridiag-short.pdf
[2]. https://en.wikipedia.org/wiki/Tridiagonal_matrix
[3]. https://en.wikipedia.org/wiki/Toeplitz_matrix
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/234581.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...