格雷码的实现[通俗易懂]问题:产生n位元的所有格雷码。格雷码(GrayCode)是一个数列集合,每个数使用二进位来表示,假设使用n位元来表示每个数字,任两个数之间只有一个位元值不同。例如以下为3位元的格雷码: 000001011010110111101100。如果要产生n位元的格雷码,那么格雷码的个数为2^n.假设原始的值从0开始,格雷码产生的规律是:第一步,改变最右边的
大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。
Jetbrains全家桶1年46,售后保障稳定
问题:产生n位元的所有格雷码。
格雷码(Gray Code)是一个数列集合,每个数使用二进位来表示,假设使用n位元来表示每个数字,任两个数之间只有一个位元值不同。
例如以下为3位元的格雷码: 000 001 011 010 110 111 101 100 。
如果要产生n位元的格雷码,那么格雷码的个数为2^n.
假设原始的值从0开始,格雷码产生的规律是:第一步,改变最右边的位元值;第二步,改变右起第一个为1的位元的左边位元;第三步,第四步重复第一步和第二步,直到所有的格雷码产生完毕(换句话说,已经走了(2^n) – 1 步)。
用一个例子来说明:
假设产生3位元的格雷码,原始值位 000
第一步:改变最右边的位元值: 001
第二步:改变右起第一个为1的位元的左边位元: 011
第三步:改变最右边的位元值: 010
第四步:改变右起第一个为1的位元的左边位元: 110
第五步:改变最右边的位元值: 111
第六步:改变右起第一个为1的位元的左边位元: 101
第七步:改变最右边的位元值: 100
如果按照这个规则来生成格雷码,是没有问题的,但是这样做太复杂了。如果仔细观察格雷码的结构,我们会有以下发现:
1、除了最高位(左边第一位),格雷码的位元完全上下对称(看下面列表)。比如第一个格雷码与最后一个格雷码对称(除了第一位),第二个格雷码与倒数第二个对称,以此类推。
2、最小的重复单元是 0 , 1。
000
001
011
010
110
111
101
100
所以,在实现的时候,我们完全可以利用递归,在每一层前面加上0或者1,然后就可以列出所有的格雷码。
比如:
第一步:产生 0, 1 两个字符串。
第二步:在第一步的基础上,每一个字符串都加上0和1,但是每次只能加一个,所以得做两次。这样就变成了 00,01,11,10 (注意对称)。
第三步:在第二步的基础上,再给每个字符串都加上0和1,同样,每次只能加一个,这样就变成了 000,001,011,010,110,111,101,100。
好了,这样就把3位元格雷码生成好了。
如果要生成4位元格雷码,我们只需要在3位元格雷码上再加一层0,1就可以了: 0000,0001,0011,0010,0110,0111,0101,0100,1100,1101,1110,1010,0111,1001,1000.
也就是说,n位元格雷码是基于n-1位元格雷码产生的。
如果能够理解上面的部分,下面部分的代码实现就很容易理解了。
public String[] GrayCode(int n) {
// produce 2^n grade codes
String[] graycode = new String[(int) Math.pow(2, n)];
if (n == 1) {
graycode[0] = "0";
graycode[1] = "1";
return graycode;
}
String[] last = GrayCode(n - 1);
for (int i = 0; i < last.length; i++) {
graycode[i] = "0" + last[i];
graycode[graycode.length - 1 - i] = "1" + last[i];
}
return graycode;
}
Jetbrains全家桶1年46,售后保障稳定
格雷码还有一种实现方式是根据这个公式来的 G(n) = B(n) XOR B(n+1), 这也是格雷码和二进制码的转换公式。代码如下:
public void getGrayCode(int bitNum){
for(int i = 0; i < (int)Math.pow(2, bitNum); i++){
int grayCode = (i >> 1) ^ i;
System.out.println(num2Binary(grayCode, bitNum));
}
}
public String num2Binary(int num, int bitNum){
String ret = "";
for(int i = bitNum-1; i >= 0; i--){
ret += (num >> i) & 1;
}
return ret;
}
转载请注明出处:blog.csdn.net/beiyeqingteng
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/234466.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...