什么是GMM算法_bs模型公式

什么是GMM算法_bs模型公式1.高斯模型与高维高斯模型介绍高斯模型也就是正态分布模型,该模型最早可见于我们的高中数学教材中。闻其名知其意,正态分布是自然界中普遍存在的一种分布。比如,考试成绩,人的智力水平等等。都是大致呈现为正态分布。其概率密度函数为其中参数为μ,σ2,都是一维标量。对于高维高斯模型,与一维类似,只是自变量变成了多维,是一个向量。其概率密度函数为其中参数为μ…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全家桶1年46,售后保障稳定

1. 高斯模型与高维高斯模型介绍

     高斯模型也就是正态分布模型,该模型最早可见于我们的高中数学教材中。闻其名知其意,正态分布是自然界中普遍存在的一种分布。比如,考试成绩,人的智力水平等等。都是大致呈现为正态分布。其概率密度函数为

什么是GMM算法_bs模型公式

其中参数为μ,σ2 ,都是一维标量。

       对于高维高斯模型,与一维类似,只是自变量变成了多维,是一个向量。其概率密度函数为

什么是GMM算法_bs模型公式

其中参数为μ,Σ , μ是向量,Σ是协方差矩阵,是个对称阵。 

2. 高斯混合模型

       高斯混合模型简单的说就是多个高斯模型的叠加。比如在某一个班级中,将男生和女生分成两个高斯模型来分别表示男生和女生的身高,将这个两个模型叠加到一起就是整个班级的高斯混合模型。然后此时,班上突然新来了一位同学,但是不知道ta是男生还是女生。这时首先就要对ta性别进行估计,假设有0.6的概率是男生,那么就是0.4的概率为女生。那么,对该同学的身高估计=0.6 \times 班上男生(其中一个高斯分布)身高期望+0.4 \times 班上女生(其中另一个高斯分布)身高期望。对于这个0.6是我们随意假设的,但是在大多数实际情况中,我们是不能直接得到其具体值的,也就是所谓的隐变量(latent variable)。而人的身高,是我们可以观察到的样本,也就是可观察变量(observed variable)。

      下面用具体符号来说明。假设一共有K个高斯分布,获得每一个高斯分布的概率为\alpha_k,那么高斯混合分布模型如下

什么是GMM算法_bs模型公式

现在我们已知的是很多可观察样本(也就是一群人的身高,但是不知道性别),我们要来估计\alpha_k,\mu_k,\Sigma _k(也就是来估计属于男生和女生概率,男生高斯分布的两个参数和女生高斯分布的两个参数)。 

      我们用极大似然估计来估计模型参数,似然函数为

什么是GMM算法_bs模型公式

 其中,一共有m个样本,什么是GMM算法_bs模型公式表示第j个样本。我们的目标是求似然函数LL最大时的参数,一般情况下在这里直接对似然函数对参数求偏导即可。但是由于这里log里是一个求和式子,使得求导不能直接算出对应的参数取值。我们需要使用下面的方法来求解参数。

3. EM算法来估计高斯混合模型的参数

       EM算法的大致流程是这样的,先随机初始化原模型参数,由于不能通过求导算出对应的解析解,所以我们先得到某个LL函数的下界函数H,使得LL>=H,然后通过对相应变量求偏导算出使得H最大的相应参数值,将模型的参数更新为新求得的参数。此时模型参数改变,LL函数也改变,LL的下界H也需要改变,从新计算H函数后,又求导算出使得新的H最大的对应的参数值,又将参数更新,继续上述过程,直到收敛。

       根据初始化的模型参数,我们可以根据贝叶斯公式求得第j个样本什么是GMM算法_bs模型公式是来自第k个高斯分布产生的后验概率

什么是GMM算法_bs模型公式

什么是GMM算法_bs模型公式 

根据初始化参数算出的什么是GMM算法_bs模型公式 是已知的概率值,没有任何参数。根据上式可得  \sum_{k=1}^{K}\gamma_{jk}=1

然后我们对LL函数作如下推导

                                                                      LL=\sum_{j=1}^{m}log(\sum_{k=1}^{K}\alpha_kp(x^{(j)};\mu_k,\Sigma _k))\\=\sum_{j=1}^{m}log(\sum_{k=1}^{K}\gamma_{jk}\frac{\alpha_kp(x^{(j)};\mu_k,\Sigma_k)}{\gamma_{jk}})\\ \geqslant \sum_{j=1}^{m}\sum_{k=1}^{K}\gamma_{jk}log(\frac{\alpha_kp(x^{(j)};\mu_k,\Sigma_k)}{\gamma_{jk}})                                                                  由于log函数是上凸函数,根据Jensen不等式可以求出其下界。这里log函数里是一些项的乘积形式,求导求解比较方便。我们令H=\sum_{j=1}^{m}\sum_{k=1}^{K}\gamma_{jk}log(\frac{\alpha_kp(x^{(j)};\mu_k,\Sigma_k)}{\gamma_{jk}}),然后分别对\alpha_k,\mu_k,\Sigma _k求导,并令结果为0,分别解出\alpha_k,\mu_k,\Sigma _k的相应的值。(PS. 在H函数中只有\alpha_k,\mu_k,\Sigma _k是变量,其余都已知)。其中特别一点的是,求\alpha_k时,由于\alpha_k是有限制的,\sum_{k=1}^{K}\alpha_k=1,需要使用拉格朗日乘数法来计算。这里直接给出求解结果,具体求解步骤见附录。

什么是GMM算法_bs模型公式

什么是GMM算法_bs模型公式

什么是GMM算法_bs模型公式

 总结一下,完整的算法过程如下

什么是GMM算法_bs模型公式

 4 代码

def Expectation(data, mu, sigma, alpha, K):
    """
    EM算法的E步
    :param data:数据集
    :param mu:均值向量
    :param sigma:协方差矩阵
    :param alpha:混合系数
    :return:各混合成分生成的后验概率gamma
    """
    m = data.shape[0]    #m为样本数量

    #初始化后验概率矩阵gamma
    gamma = np.zeros((m, K))

    #计算各模型中所有样本出现的概率,行对应样本,列对应模型
    prob = np.zeros((m, K))
    for k in range(K):
        prob[:, k] = alpha[k] * mul_normal(data, mu[k], sigma[k])

    gamma = prob / np.sum(prob, axis=1, keepdims=True)

    return gamma
def Maximization(data, gamma, K):
    """
    更新模型参数
    :param data:数据集 
    :param gamma:各混合成分生成的后验概率 
    :return:更新后的模型参数 
    """
    m, n = data.shape    #m为样本数,n为特征数

    #初始化高斯混合分布的模型参数值,因为要更新它们
    mu = np.zeros((K, n))
    sigma = []
    
    mk = np.sum(gamma, axis=0)
    #更新每个高斯混合成分的模型参数
    for k in range(K):
        #更新mu
        mu[k, :] = gamma[:, k].reshape(1, m) * data / mk[k]
        #更新sigma
        sigma_k = (data - mu[k]).T * np.multiply((data - mu[k]), gamma[:, k].reshape(m, 1)) / mk[k]
        sigma.append(sigma_k)
    #更新alpha
    alpha = mk / m
    sigma = np.array(sigma)    #为了保持一致,还需将sigma转回array
    
    return mu, sigma, alpha
def GMM_EM(data, K, iterations):
    """
    高斯混合聚类算法
    :param data:数据集 
    :param K:簇数量 
    :param iterations:迭代次数 
    :return: 
    """
    mu, sigma, alpha = init_parameters(data, K)
    for i in range(iterations):
        gamma = Expectation(data, mu, sigma, alpha, K)
        mu, sigma, alpha = Maximization(data, gamma, K)
    
    #用最终的模型参数来计算所有样本对于各混合成分的后验概率,以此作为最终簇划分的依据
    gamma = Expectation(data, mu, sigma, alpha, K)
    print('mu',mu)
    return gamma

Jetbrains全家桶1年46,售后保障稳定

附 求导过程 

什么是GMM算法_bs模型公式

 什么是GMM算法_bs模型公式

 

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/234338.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

  • 小米手机计算机无法归零,小米体脂秤不归零怎么调

    1、放平体重秤秤角。电子体重秤是比较敏感的,所以先确认四个秤脚是否摆放平稳、否有悬空、否有杂物,另外选择坚实的地面;2、移动后数据稳定再称重。第一次称完下来等数据稳定归零后再进行第二次测量;3、关闭忽略30秒之内的称重数据功能。小米体重秤有个选项,会自动忽略30秒之内的称重数据,也就是说前一个人刚称重完,30秒内另一个人站上去,得不到准确的数据。可以选择关闭该功能或者等30秒后再称重;4、重新绑定…

  • LLDP简介

    LLDP简介1.1.1LLDP产生背景目前,网络设备的种类日益繁多且各自的配置错综复杂,为了使不同厂商的设备能够在网络中相互发现并交互各自的系统及配置信息,需要有一个标准的信息交流平台。LLDP(LinkLayerDiscoveryProtocol,链路层发现协议)就是在这样的背景下产生的,它提供了一种标准的链路层发现方式,可以将本端设备的信息(包括主要能力、管理地址、设备标识、接口标识等)组织成不同的TLV(Type/Length/Value,类型/长度/值),并封装在LLDPDU(Lin…

  • 点云常见几种算法(详细教程)

    点云常见几种算法(详细教程)

  • 对于三极管饱和状态的一些浅见——与网友的讨论贴

    对于三极管饱和状态的一些浅见——与网友的讨论贴网友问:2012-10-1612:16:34 郑老师:这篇大作把三极管的放大和截止两个状态阐述其机理挺明白了。那么还有第三个状态,饱和状态是怎么一个情况?请问1.三极管饱和状态是通过外部偏置电阻等预先设置好,通电后直接进入这个饱和状态的吗?2.三极管处于饱和状态时,集电结施加正偏电压后,基区及集电区各载流子的运动状态是怎样的?我怎么觉得两个PN结都

  • grahphics_blitz

    grahphics_blitz1.前言Graphics的Blit方法是比较简单也是比较常用的方法。最简单的作用是将一张纹理绘制到另一张纹理中。而在此方法中可以指定一种材质来实现特殊的效果,所以常和OnRenderImage方法配

  • document.getElementById的理解

    document.getElementById的理解个人现在的理解就是在一个页面中找到对应id的模块

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号