MapReduce编程初级实践_mapreduce的执行流程

MapReduce编程初级实践_mapreduce的执行流程编程实现文件合并和去重操作对于两个输入文件,即文件A和文件B,请编写MapReduce程序,对两个文件进行合并,并剔除其中重复的内容,得到一个新的输出文件C。下面是输入文件和输出文件的一个样例供参考。输入文件A的样例如下:20150101x20150102y20150103x20150104y…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全家桶1年46,售后保障稳定

  1. 编程实现文件合并和去重操作
    对于两个输入文件,即文件A和文件B,请编写MapReduce程序,对两个文件进行合并,并剔除其中重复的内容,得到一个新的输出文件C。下面是输入文件和输出文件的一个样例供参考。
    输入文件A的样例如下:
	20150101     x
	20150102     y
	20150103     x
	20150104     y
	20150105     z
	20150106     x

Jetbrains全家桶1年46,售后保障稳定

输入文件B的样例如下:

	20150101      y
	20150102      y
	20150103      x
	20150104      z
	20150105      y

根据输入文件A和B合并得到的输出文件C的样例如下:

	20150101      x
	20150101      y
	20150102      y
	20150103      x
	20150104      y
	20150104      z
	20150105      y
	20150105      z
	20150106      x

这里写图片描述
【注释】数据去重的最终目标是让原始数据中出现次数超过一次的数据在输出文件中只出现一次。由于shuffle过程会有合并相同key值记录的过程,会想到将不同文件中相同内容数据的Key设置成一样的,即是Map处理后是一样的,然后把交给Reduce,无论这个数据的value-list是怎么样,只要在最终结果输出它的key就行了。

代码如下:


package com.Merge;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.*;
import org.apache.hadoop.mapreduce.lib.output.*;
//import org.apache.hadoop.mapred.FileOutputFormat;


//import org.apache.hadoop.mapreduce.Mapper.Context;

public class Merge {
	public static class Map extends Mapper<Object,Text,Text,Text>{
		private static Text text=new Text();
		
		public void map(Object key,Text value,Context context) throws IOException, InterruptedException{
			
				text=value;
				context.write(text,new Text(""));
			
		}
		
	}
	public static class Reduce extends Reducer<Text,Text,Text,Text>{
		public void reduce(Text key,Iterable <Text>values,Context context) throws IOException, InterruptedException{
			context.write(key, new Text(""));
		}
	}
	public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException{
		Configuration conf=new Configuration();
		conf.set("fs.defaultFS","hdfs://localhost:9000");
		String[] otherArgs=new String[]{"input","output"};
		if(otherArgs.length!=2){
			System.err.println("Usage:Merge and duplicate removal<in><out>");
			System.exit(2);
		}
		Job job=Job.getInstance(conf,"Merge and duplicate removal");
		job.setJarByClass(Merge.class);
		job.setMapperClass(Map.class);
		job.setReducerClass(Reduce.class);
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(Text.class);
		FileInputFormat.addInputPath(job,new Path(otherArgs[0]));
		FileOutputFormat.setOutputPath(job,new Path(otherArgs[1]));
		System.exit(job.waitForCompletion(true)?0:1);
	}
	
	
	
}

输出结果:

这里写图片描述

这里写图片描述

合并与去重成功!

2.编写程序实现对输入文件的排序
现在有多个输入文件,每个文件中的每行内容均为一个整数。要求读取所有文件中的整数,进行升序排序后,输出到一个新的文件中,输出的数据格式为每行两个整数,第一个数字为第二个整数的排序位次,第二个整数为原待排列的整数。下面是输入文件和输出文件的一个样例供参考。
输入文件1的样例如下:

33
37
12
40

输入文件2的样例如下:

4
16
39
5

输入文件3的样例如下:

1
45
25

根据输入文件1、2和3得到的输出文件如下:

1 1
2 4
3 5
4 12
5 16
6 25
7 33
8 37
9 39
10 40
11 45

这里写图片描述
【注释】MapRedcue有默认排序规则:按照key值进行排序的,如果key为封装int的IntWritable类型,那么MapReduce按照数字大小对key排序。所以在Map中将读入的数据转化成IntWritable型,然后作为key值输出(value任意)。reduce拿到之后,将输入的key作为value输出,并根据value-list中元素的个数决定输出的次数。

代码如下:

package com.MergeSort;

import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

public class MergeSort { 
   

	
	public static class Map extends Mapper<Object,Text,IntWritable,IntWritable>{ 
   
		private static IntWritable data=new IntWritable();
		public void map(Object key,Text value,Context context) throws IOException, InterruptedException{ 
   
			String line=value.toString();
			data.set(Integer.parseInt(line));
			context.write(data, new IntWritable(1));
		}
	}
	public static class Reduce extends Reducer<IntWritable,IntWritable,IntWritable,IntWritable>{ 
   
		private static IntWritable linenum=new IntWritable(1);
		public void reduce(IntWritable key,Iterable <IntWritable>values,Context context) throws IOException, InterruptedException{ 
   
			for(IntWritable num:values){ 
   
				context.write(linenum, key);
				linenum=new IntWritable(linenum.get()+1);
			}
			
		}
	}
	
	
	
	
	/** * @param args * @throws IOException * @throws InterruptedException * @throws ClassNotFoundException */
	
	public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException{ 
   
		Configuration conf=new Configuration();
		conf.set("fs.defaultFS","hdfs://localhost:9000");
		String[] str=new String[]{ 
   "input","output"};
		String[] otherArgs=new GenericOptionsParser(conf,str).getRemainingArgs();
		if(otherArgs.length!=2){ 
   
			System.err.println("Usage:mergesort<in><out>");
			System.exit(2);
		}
		Job job=Job.getInstance(conf,"mergesort");
		job.setJarByClass(MergeSort.class);
		job.setMapperClass(Map.class);
		job.setReducerClass(Reduce.class);
		job.setOutputKeyClass(IntWritable.class);
		job.setOutputValueClass(IntWritable.class);
		FileInputFormat.addInputPath(job,new Path(otherArgs[0]));
		FileOutputFormat.setOutputPath(job,new Path(otherArgs[1]));
		System.exit(job.waitForCompletion(true)?0:1);
	}

}

输出结果:
这里写图片描述

这里写图片描述
合并及排序成功!

3.对给定的表格进行信息挖掘
下面给出一个child-parent的表格,要求挖掘其中的父子辈关系,给出祖孙辈关系的表格。
输入文件内容如下:

Steven        Lucy
	Steven        Jack
	Jone         Lucy
	Jone         Jack
	Lucy         Mary
	Lucy         Frank
	Jack         Alice
	Jack         Jesse
	David       Alice
	David       Jesse
	Philip       David
	Philip       Alma
	Mark       David
	Mark       Alma

输出文件内容如下:

	grandchild       grandparent
	Steven          Alice
	Steven          Jesse
	Jone            Alice
	Jone            Jesse
	Steven          Mary
	Steven          Frank
	Jone            Mary
	Jone            Frank
	Philip           Alice
	Philip           Jesse
	Mark           Alice
	Mark           Jesse

这里写图片描述
【注释】分析题意可知这是要进行单表连接。考虑到MapReduce的Shuffle过程会将相同的Key值放在一起,所以可以将Map结果的Key值设置成待连接的列,然后列中相同的值就自然会连接在一起了。具体而言,就是是左表的parent列和右表的child列设置成Key,则左表中child(即为结果中的grandchild)和右表中的parent(即为结果中的grandparent)。为了区分输出中的左、右表,需要在输出的value-list中再加入左、右表的信息,比如,在value的String最开始处加上字符1表示左表,加上字符2表示右表。这样设计后,Reduce接收的中每个key的value-list包含了grandchild和grandparent关系。取出每个Key的value-list进行解析,将右表中的child放入一个数组,左表中的parent放入另一个数组,然后对两个数组求笛卡尔积就是最后的结果。

代码如下:

package com.join;

import java.io.IOException;
import java.util.*;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class STjoin { 
   
	public static int time = 0;
    public static class Map extends Mapper<Object, Text, Text, Text> { 
   
        public void map(Object key, Text value, Context context)
                throws IOException, InterruptedException { 
   
            String child_name = new String();
            String parent_name = new String();
            String relation_type = new String();
            String line = value.toString();
            int i = 0;
            while (line.charAt(i) != ' ') { 
   
                i++;
            }
            String[] values = { 
    line.substring(0, i), line.substring(i + 1) };
            if (values[0].compareTo("child") != 0) { 
   
                child_name = values[0];
                parent_name = values[1];
                relation_type = "1";
                context.write(new Text(values[1]), new Text(relation_type + "+"   + child_name + "+" + parent_name));
                relation_type = "2";
                context.write(new Text(values[0]), new Text(relation_type + "+"
                        + child_name + "+" + parent_name));
            }
        }
    }
    public static class Reduce extends Reducer<Text, Text, Text,Text> { 
   
        public void reduce(Text key, Iterable values, Context context)
                throws IOException, InterruptedException { 
   
            if (time == 0) { 
   
                context.write(new Text("grand_child"), new Text("grand_parent"));
                time++;
            }
            int grand_child_num = 0;
            String grand_child[] = new String[10];
            int grand_parent_num = 0;
            String grand_parent[] = new String[10];
            Iterator ite = values.iterator();
            while (ite.hasNext()) { 
   
                String record = ite.next().toString();
                int len = record.length();
                int i = 2;
                if (len == 0)
                    continue;
                char relation_type = record.charAt(0);
                String child_name = new String();
                String parent_name = new String();
                while (record.charAt(i) != '+') { 
   
                    child_name = child_name + record.charAt(i);
                    i++;
                }
                i = i + 1;
                while (i < len) { 
   
                    parent_name = parent_name + record.charAt(i);
                    i++;
                }
                if (relation_type == '1') { 
   
                    grand_child[grand_child_num] = child_name;
                    grand_child_num++;
                } else { 
   
                    grand_parent[grand_parent_num] = parent_name;
                    grand_parent_num++;
                }
            }
            if (grand_parent_num != 0 && grand_child_num != 0) { 
   
                for (int m = 0; m < grand_child_num; m++) { 
   
                    for (int n = 0; n < grand_parent_num; n++) { 
   
                        context.write(new Text(grand_child[m]), new Text(grand_parent[n]));
                    }
                }
            }
        }
    }
    public static void main(String[] args) throws Exception { 
   
        Configuration conf = new Configuration();
        conf.set("fs.defaultFS", "hdfs://localhost:9000");
        String[] otherArgs = new String[] { 
    "input", "output" };
        if (otherArgs.length != 2) { 
   
        	 System.err.println("Usage: Single Table Join ");
             System.exit(2);
         }
         Job job = Job.getInstance(conf, "Single table join ");
         job.setJarByClass(STjoin.class);
         job.setMapperClass(Map.class);
         job.setReducerClass(Reduce.class);
         job.setOutputKeyClass(Text.class);
         job.setOutputValueClass(Text.class);
         FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
         FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
         System.exit(job.waitForCompletion(true) ? 0 : 1);
     }
 }

输出结果:
这里写图片描述

这里写图片描述

挖掘亲属关系成功!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/230922.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • PIP 更换国内安装源「建议收藏」

    PIP 更换国内安装源「建议收藏」pip国内的一些镜像  阿里云http://mirrors.aliyun.com/pypi/simple/  中国科技大学https://pypi.mirrors.ustc.edu.cn/simple/  豆瓣(douban)http://pypi.douban.com/simple/  清华大学https://pypi.tuna.tsinghua.edu.cn/simpl…

  • 感知机(Perceptron)为什么不能表示异或(XOR)

    感知机(Perceptron)为什么不能表示异或(XOR)1.感知机不能表示异或在很早之前学PatternRecognition相关课程的时候,老师在课堂上就说过感知机遇到的一个大问题就是无法表示异或问题(XOR)。后来接触深度学习相关的内容,开头部分肯定会提到感知机,提到感知机也必会提到不能表示异或的问题。正好抽出点时间,稍微搞明白一下为什么感知机不能表示异或。2.感知机的数学定义感知机到底是什么呢?首先来看一下他的数学定义:假设输入空间(即样本的

  • 排序二叉树及其Java实现[通俗易懂]

    排序二叉树及其Java实现[通俗易懂]定义排序二叉树的定义也是递归定义的,需要满足:(1)若它的左子树不为空,则左子树上所有节点的值要均小于根节点的值;(2)若它的右子树不为空,则右子树上所有节点的值要均大于根节点的值;(3)左、右子树也分别是排序二叉树如下图,对于排序二叉树,若按中序遍历就可以得到由小到大的有序序列。创建创建排序二叉树的步骤就是不断像排序二叉树中添加新节点(p)的过程:(1)以根节

  • redis客户端下载_redissonclient

    redis客户端下载_redissonclient官网下载:https://github.com/caoxinyu/RedisClient

    2022年10月11日
  • spring整合log4j_spring整合log4j

    spring整合log4j_spring整合log4j常用日志框架log4j、log4j2(log4j的升级版,最常用的)、logback(spring boot默认)、Jboss-logging…等slf4 是日志接口规范,代码对接slf4,实现和具体日志框架解耦,无需修改编码即可切换日志框架。修改pom依赖<dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-st

  • python冒泡排序算法代码_python用冒泡法对10个数排序

    python冒泡排序算法代码_python用冒泡法对10个数排序Num01–>冒泡排序定义冒泡排序(英语:BubbleSort)是一种简单的排序算法。它重复地遍历要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。遍历数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。

    2022年10月15日

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号