logistic 函数(logistic function)sigmoid函数

logistic 函数(logistic function)sigmoid函数今天看SVM(支持向量机),开始先引入了logistic函数,虽然给出了一公式,但好奇logistic函数啥东东啊,为啥叫logistic呢,搜索ing。说简单些,logistic函数其实就是这样一个函数:

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全家桶1年46,售后保障稳定

博客新址: http://blog.xuezhisd.top
邮箱:xuezhisd@126.com


今天看SVM(支持向量机),开始先引入了logistic函数,虽然给出了一公式,但好奇logistic函数啥东东啊,为啥叫logistic呢,搜索ing。
说简单些,logistic函数其实就是这样一个函数:
P(t) = \frac{1}{1 + e^{-t}}
非常简单吧,这个函数的曲线如下所示:、

逻辑斯蒂函数

很像一个“S”型吧,所以又叫 sigmoid曲线(S型曲线)。
%%%%%%%%%%%%%%%%以下是为进一步了解,普通工科学生会用就行了%%%%%%%%%%%%%%%%%%%%%
上面只是作为一般使用时了解的即可,但实际上这个函数可是大有来头:
逻辑斯谛方程即微分方程:
\frac{dP}{dt}=rP\left(1 – \frac{P}{K}\right)。
当一个物种迁入到一个新生态系统中后,其数量会发生变化。假设该物种的起始数量小于环境的最大容纳量,则数量会增长。该物种在此生态系统中有天敌、食物、空间等资源也不足(非理想环境),则增长函数满足逻辑斯谛方程,图像呈S形,此方程是描述在资源有限的条件下种群增长规律的一个最佳数学模型。在以下内容中将具体介绍逻辑斯谛方程的原理、生态学意义及其应用。
这还要追溯到1838年,一个比利时的数学家叫Pierre-François Verhulst(1804-1849)的人,他那个时候研究人口增长的课题,提出了人口增长不但和现有人口相关,还和可用资源有关,即有一个人口的承载量,首先将营养关系反映到种群数学模型方面,是它首先导出了后来被广泛称为逻辑斯谛的方程,最初发表的时候叫Verhulst方程。但在当时并没有引起大家的注意,直到1920年两位美国人口学家Pearl和Reed在研究美国人口问题时,再次提出这个方程,才开始流行,故现在文献中通常称之为Verhulst-Pearl阻碍方程。其所以又称为逻辑斯谛方程是因为其有某种逻辑推理的含义。按现在的用语来说,它是一个说理模型,实际上是反映营养对种群增长的一种线性限制关系的说理模型。
1963年,洛伦兹发现确定性系统的随机性为,并且发现了这种随机行为对初值的敏感性。1975年,美籍华人学者李天岩和数学家约克发表“周期中蕴含着混沌”的著名文章,揭示从有序到混沌的演化过程。这些内容都包含在逻辑斯谛差分方程中。1976年R.梅在英国《自然》杂志上发表了研究逻辑斯谛方程的成果—《表现非常复杂的动力学的简单数学模型》,引起学术界极大关注,内容已远远超越了生态学领域,揭示出逻辑斯谛方程深处蕴藏的丰富内涵。
将上面的方程解出来(这个学过高等数学的人都会吧,很简单的大笑),可以得到:
P(t) = \frac{K P_0 e^{rt}}{K + P_0 \left( e^{rt} – 1\right)}
其中P_0为初始值,很眼熟吧,变变形,是不是就类似开头提出的logistic函数了,唯一不同的事系数有所变化。

P(t) = \frac{1}{1 + e^{-t}}

更多具体的内容大家可以参考维基百科:http://en.wikipedia.org/wiki/Logistic_function
或者百度搜索关键词“逻辑斯谛方程”,成堆的结果就出来了安静

  • 参考:http://blog.csdn.net/garfield2005/article/details/7553903
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/230783.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • Unity Shader-描边效果[通俗易懂]

    简介描边效果是游戏里面非常常用的一种效果,一般在选中物体或者NPC的时候,被选中的对象就会显示描边效果。比如最近又跑回去玩了玩《剑灵》,虽然出了三年了,在现在的网游里面画面仍然算很好的。还有就是最常见的LOL中的塔,选中时就会看到很明显的描边效果:

  • uva 714 – Copying Books(贪心 最大值最小化 二分)

    uva 714 – Copying Books(贪心 最大值最小化 二分)

  • Eclipse SVN冲突详细解决方案「建议收藏」

    Eclipse SVN冲突详细解决方案「建议收藏」大家一起开发,难免有时会同时修改同一个文件,这样就要学会解决冲突。当大家更新代码,发现以下情况的时候,就说明你的修改的文件和服务器的文件产生了冲突(一般是别人也改了同一个文件)。1)和服务器有冲突的文件:2)点击Update以后,如果出现以下情况(出现四个文件),就说明需要解决冲突。如何解决冲突:出现文件冲突的时候:你有四个选择:1以我修改的为准,不管服务

    2022年10月14日
  • html5表格内容怎么居中_html表格上下居中

    html5表格内容怎么居中_html表格上下居中回答:IE6/7及IE8混杂模式中,text-align:center可以使块级元素也居中对齐。其他浏览器中,text-align:center仅作用于行内内容上。解决这个问题比较好的方式,就是为所有需要相对父容器居中对齐的块级元素设置“margin-left:Auto;margin-right:Auto”。但这个方式IE6/IE7/IE8的混杂模式中不支持,所以还要设置父容器的”text…

  • dos命令运行java代码_如何制作ddos攻击

    dos命令运行java代码_如何制作ddos攻击dos攻击:拒绝服务攻击具体的原理不再多说我这里是java实现的推荐使用python做这种脚本,不要用java我写的仅供参考学习,请勿做坏事packagedos;importjava.net.httpurlconnection;importjava.net.url;importjava.net.urlconnection;importjava.util.arraylist;import…

  • SD卡与MMC卡的区别

    SD卡与MMC卡的区别本文译至:http://home.impress.co.jp/magazine/dosvpr/q-a/0108/qa0108_2.htm

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号