logistic 函数(logistic function)sigmoid函数

logistic 函数(logistic function)sigmoid函数今天看SVM(支持向量机),开始先引入了logistic函数,虽然给出了一公式,但好奇logistic函数啥东东啊,为啥叫logistic呢,搜索ing。说简单些,logistic函数其实就是这样一个函数:

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全家桶1年46,售后保障稳定

博客新址: http://blog.xuezhisd.top
邮箱:xuezhisd@126.com


今天看SVM(支持向量机),开始先引入了logistic函数,虽然给出了一公式,但好奇logistic函数啥东东啊,为啥叫logistic呢,搜索ing。
说简单些,logistic函数其实就是这样一个函数:
P(t) = \frac{1}{1 + e^{-t}}
非常简单吧,这个函数的曲线如下所示:、

逻辑斯蒂函数

很像一个“S”型吧,所以又叫 sigmoid曲线(S型曲线)。
%%%%%%%%%%%%%%%%以下是为进一步了解,普通工科学生会用就行了%%%%%%%%%%%%%%%%%%%%%
上面只是作为一般使用时了解的即可,但实际上这个函数可是大有来头:
逻辑斯谛方程即微分方程:
\frac{dP}{dt}=rP\left(1 – \frac{P}{K}\right)。
当一个物种迁入到一个新生态系统中后,其数量会发生变化。假设该物种的起始数量小于环境的最大容纳量,则数量会增长。该物种在此生态系统中有天敌、食物、空间等资源也不足(非理想环境),则增长函数满足逻辑斯谛方程,图像呈S形,此方程是描述在资源有限的条件下种群增长规律的一个最佳数学模型。在以下内容中将具体介绍逻辑斯谛方程的原理、生态学意义及其应用。
这还要追溯到1838年,一个比利时的数学家叫Pierre-François Verhulst(1804-1849)的人,他那个时候研究人口增长的课题,提出了人口增长不但和现有人口相关,还和可用资源有关,即有一个人口的承载量,首先将营养关系反映到种群数学模型方面,是它首先导出了后来被广泛称为逻辑斯谛的方程,最初发表的时候叫Verhulst方程。但在当时并没有引起大家的注意,直到1920年两位美国人口学家Pearl和Reed在研究美国人口问题时,再次提出这个方程,才开始流行,故现在文献中通常称之为Verhulst-Pearl阻碍方程。其所以又称为逻辑斯谛方程是因为其有某种逻辑推理的含义。按现在的用语来说,它是一个说理模型,实际上是反映营养对种群增长的一种线性限制关系的说理模型。
1963年,洛伦兹发现确定性系统的随机性为,并且发现了这种随机行为对初值的敏感性。1975年,美籍华人学者李天岩和数学家约克发表“周期中蕴含着混沌”的著名文章,揭示从有序到混沌的演化过程。这些内容都包含在逻辑斯谛差分方程中。1976年R.梅在英国《自然》杂志上发表了研究逻辑斯谛方程的成果—《表现非常复杂的动力学的简单数学模型》,引起学术界极大关注,内容已远远超越了生态学领域,揭示出逻辑斯谛方程深处蕴藏的丰富内涵。
将上面的方程解出来(这个学过高等数学的人都会吧,很简单的大笑),可以得到:
P(t) = \frac{K P_0 e^{rt}}{K + P_0 \left( e^{rt} – 1\right)}
其中P_0为初始值,很眼熟吧,变变形,是不是就类似开头提出的logistic函数了,唯一不同的事系数有所变化。

P(t) = \frac{1}{1 + e^{-t}}

更多具体的内容大家可以参考维基百科:http://en.wikipedia.org/wiki/Logistic_function
或者百度搜索关键词“逻辑斯谛方程”,成堆的结果就出来了安静

  • 参考:http://blog.csdn.net/garfield2005/article/details/7553903
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/230783.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

  • python 正则表达式详解

    python 正则表达式详解正则表达式是一个很强大的字符串处理工具,几乎任何关于字符串的操作都可以使用正则表达式来完成,作为一个爬虫工作者,每天和字符串打交道,正则表达式更是不可或缺的技能,正则表达式的在不同的语言中使用方式可能

  • 高中信息技术知识点_高一信息技术基础知识点整理

    高中信息技术知识点_高一信息技术基础知识点整理第一章绪言一、信息1.信息的含义:理解信息的含义:(三种典型的观点)香农的观点:用来消除不确定的东西维纳的观点:区别于物质与能量的第三类资源钟义信的观点:事物运动的状态与方式2.信息的基本特征:依附性、共享性、时效性、价值性、普遍性等例如:信息必须依附于载体,同一信息可以依附于不同的载体。人…

    2022年10月23日
  • 内网IP和公网IP的区别及作用

    内网IP和公网IP的区别及作用说明:本文仅是针对网络知识懵懂人事的一篇白话解说文,并非技术探讨及进阶文章,各位看官自行甄选;本文仅以ipv4为基础。使用网络的人必然会接触IP地址,ip地址又分内网(私有)ip和公网(外网)ip地址,那么他们之间的区别是什么?为什么要分为内网和外网ip?何时使用哪种ip今天我就用大白话的形式,给大家举一个例子,希望能对各位对于ip有一个初步的了解。拿一个家庭来举例,一般你的路由器以内,就是内网,并且路由器内连接的所有设备或终端都会被分配一个内网ip;反之,路由器及以外就是外网ip,这个外网ip通常

  • Centos7 Apache配置虚拟主机的三种方式

    Centos7 Apache配置虚拟主机的三种方式

    2021年10月25日
  • 怎么修改Ubuntu更新源服务器为国内地址

    怎么修改Ubuntu更新源服务器为国内地址 Ubuntu系统安装完默认更新源是国外服务器,总所周知的原因我天朝连接外国的速度那是很有讲究的,如果偶尔用用Ubuntu也就无所谓了,但是经常使用肯定会让你崩溃的,国内国外速度相差十倍都不止。更新源地址也很简单,有两种方法,一种是如果安装了图形界面,通过配置中心来更改是很方便的;还有一种就是纯服务器版,没有图形界面通过更改配置文件来更换源地址,并且命令行的方法可以随意添加任何可用的更新源地址,…

  • git生成sshkey

    git生成sshkey

    2021年10月12日

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号