logistic 函数(logistic function)sigmoid函数

logistic 函数(logistic function)sigmoid函数今天看SVM(支持向量机),开始先引入了logistic函数,虽然给出了一公式,但好奇logistic函数啥东东啊,为啥叫logistic呢,搜索ing。说简单些,logistic函数其实就是这样一个函数:

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全家桶1年46,售后保障稳定

博客新址: http://blog.xuezhisd.top
邮箱:xuezhisd@126.com


今天看SVM(支持向量机),开始先引入了logistic函数,虽然给出了一公式,但好奇logistic函数啥东东啊,为啥叫logistic呢,搜索ing。
说简单些,logistic函数其实就是这样一个函数:
P(t) = \frac{1}{1 + e^{-t}}
非常简单吧,这个函数的曲线如下所示:、

逻辑斯蒂函数

很像一个“S”型吧,所以又叫 sigmoid曲线(S型曲线)。
%%%%%%%%%%%%%%%%以下是为进一步了解,普通工科学生会用就行了%%%%%%%%%%%%%%%%%%%%%
上面只是作为一般使用时了解的即可,但实际上这个函数可是大有来头:
逻辑斯谛方程即微分方程:
\frac{dP}{dt}=rP\left(1 – \frac{P}{K}\right)。
当一个物种迁入到一个新生态系统中后,其数量会发生变化。假设该物种的起始数量小于环境的最大容纳量,则数量会增长。该物种在此生态系统中有天敌、食物、空间等资源也不足(非理想环境),则增长函数满足逻辑斯谛方程,图像呈S形,此方程是描述在资源有限的条件下种群增长规律的一个最佳数学模型。在以下内容中将具体介绍逻辑斯谛方程的原理、生态学意义及其应用。
这还要追溯到1838年,一个比利时的数学家叫Pierre-François Verhulst(1804-1849)的人,他那个时候研究人口增长的课题,提出了人口增长不但和现有人口相关,还和可用资源有关,即有一个人口的承载量,首先将营养关系反映到种群数学模型方面,是它首先导出了后来被广泛称为逻辑斯谛的方程,最初发表的时候叫Verhulst方程。但在当时并没有引起大家的注意,直到1920年两位美国人口学家Pearl和Reed在研究美国人口问题时,再次提出这个方程,才开始流行,故现在文献中通常称之为Verhulst-Pearl阻碍方程。其所以又称为逻辑斯谛方程是因为其有某种逻辑推理的含义。按现在的用语来说,它是一个说理模型,实际上是反映营养对种群增长的一种线性限制关系的说理模型。
1963年,洛伦兹发现确定性系统的随机性为,并且发现了这种随机行为对初值的敏感性。1975年,美籍华人学者李天岩和数学家约克发表“周期中蕴含着混沌”的著名文章,揭示从有序到混沌的演化过程。这些内容都包含在逻辑斯谛差分方程中。1976年R.梅在英国《自然》杂志上发表了研究逻辑斯谛方程的成果—《表现非常复杂的动力学的简单数学模型》,引起学术界极大关注,内容已远远超越了生态学领域,揭示出逻辑斯谛方程深处蕴藏的丰富内涵。
将上面的方程解出来(这个学过高等数学的人都会吧,很简单的大笑),可以得到:
P(t) = \frac{K P_0 e^{rt}}{K + P_0 \left( e^{rt} – 1\right)}
其中P_0为初始值,很眼熟吧,变变形,是不是就类似开头提出的logistic函数了,唯一不同的事系数有所变化。

P(t) = \frac{1}{1 + e^{-t}}

更多具体的内容大家可以参考维基百科:http://en.wikipedia.org/wiki/Logistic_function
或者百度搜索关键词“逻辑斯谛方程”,成堆的结果就出来了安静

  • 参考:http://blog.csdn.net/garfield2005/article/details/7553903
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/230783.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

  • PostConstruct用法说明

    PostConstruct用法说明目的:主要是启动项目并执行特定的初始化(including annotationinjectionandanyinitialization)源码说明:ThePostConstructannotationisusedonamethodthatneedstobeexecutedafterdependencyinjectionisdonetope…

  • 面试官:请你谈谈Java的类加载过程[通俗易懂]

    面试官:请你谈谈Java的类加载过程[通俗易懂]刚刚走出校门的应届毕业生,如果在去寻求一份Java开发的工作时,你的面试官很有可能一边看着你的简历,一边漫不经心地问你:了解过Java类的加载过程吗?这个时候你一定要注意了,虽然这是一个老生常谈的问题,但是这也是一个非常能够考验你Java功底的问题。如果你答好了,这是你应该的;如果你没答好,那么对不起,面试官心中已经给了你不及格。今天,小编就Java类加载过程这个问题,抛砖引玉,说一下…

  • Linux 日志分析工具之awstats详解「建议收藏」

    Linux 日志分析工具之awstats详解「建议收藏」原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 、作者信息和本声明。否则将追究法律责任。http://freeloda.blog.51cto.com/2033581

  • qlistwidget用法_自定义字段实现

    qlistwidget用法_自定义字段实现效果如下:关键代码://添加itemvoidCListTestWgt::AddItem(MarkTypetype,intserialNum,constQString&content){CItemWidget*pItemWidget=newCItemWidget(this);pItemWidget->SetData(type,serialNum,content);QListWidgetItem*pItem=new

  • 教你如何搭建自己的直播服务器-简易

    教你如何搭建自己的直播服务器-简易使用背景:在项目中有没有遇见过要对接直播接口的需求?我想大家都是有的。但是怎么说呢,对接第三方的缺点也很明显,除去那不可避免的一些事故。最大的缺点就是要钱!!!要钱!!!要钱!!!对于我们公司来说

  • ODBC 安装/使用/编程

    ODBC 安装/使用/编程前言:主要讲解ODBCAPI,以mysql为例,从配置到安装,再到具体的编程,以期对ODBC有个初步的认识.*)下载mysql,选择社区版mysql,并安装http://dev.m

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号