不同维度矩阵相乘[通俗易懂]

不同维度矩阵相乘[通俗易懂]在深度学习中经常会遇到不同维度的矩阵相乘的情况,本文会通过一些例子来展示不同维度矩阵乘法的过程。总体原则:在高维矩阵中取与低维矩阵相同维度的分片来与低维矩阵相乘,结果再按分片时的顺序还原为高维矩阵。相乘结果的维度与原来的高维矩阵一致。二维乘一维三维乘一维三维乘二维…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全家桶1年46,售后保障稳定

前言

在深度学习中经常会遇到不同维度的矩阵相乘的情况,本文会通过一些例子来展示不同维度矩阵乘法的过程。

总体原则:在高维矩阵中取与低维矩阵相同维度的子矩阵来与低维矩阵相乘,结果再按子矩阵的排列顺序还原为高维矩阵。相乘结果的维度与原来的高维矩阵一致。
具体来说,当一方为一维矩阵时,另一方取其最后一维子矩阵来做乘法;当两方都是大于等于2维的矩阵时,取各自的最后两维构成的子矩阵来做乘法,其他维度体现结果的拼接信息,不参与运算(为batch训练提供了便利,batch中各样本的顺序在矩阵运算前后保持一致)。

实例:下面我们从低维到高维,依次演示不同维度矩阵相乘的结果。

二维乘一维

二维矩阵依次取出一维的行向量与一维矩阵做内积

#二维乘一维
import numpy as np

a = np.linspace(1,4,4).reshape(2,2)
b = np.array([1,1])
c = np.matmul(a,b)
print('a:\n',a)
print('b:\n',b)
print('ab:\n',c)

Jetbrains全家桶1年46,售后保障稳定

在这里插入图片描述

三维乘一维

三维矩阵包含两个二维矩阵,分别将这两个二维矩阵与一维矩阵相乘(乘积为一维),结果按原来的顺序拼接起来,构成一个二维矩阵

#三维乘一维
import numpy as np

a = np.linspace(1,8,8).reshape(2,2,2)
b = np.array([1,1])
c = np.matmul(a,b)
print('a:\n',a)
print('b:\n',b)
print('ab:\n',c)

在这里插入图片描述

二维乘二维

最常见的矩阵相乘形式

#二维乘二维
import numpy as np

a = np.linspace(1,4,4).reshape(2,2)
b = np.ones((2,2))
c = np.matmul(a,b)
print('a:\n',a)
print('b:\n',b)
print('ab:\n',c)

在这里插入图片描述

三维乘二维

将三维矩阵中的后两维组成的二维子矩阵分别与二维矩阵相乘(二维),结果再按原顺序拼接起来(三维)

#相当于三维矩阵里的二维分量分别与二维矩阵相乘,再拼接起来
import numpy as np

a=np.linspace(1,8,8).reshape(2,2,2)
# print(a)
b = np.array([[1,0],[0,1]]) #单位矩阵
c = np.matmul(a,b)
print('a:\n',a)
print('b:\n',b)
print('ab:\n',c)

在这里插入图片描述

三维乘三维

两个三维矩阵中对应位置的二维子矩阵分别相乘,结果按第0维分量更多的那个矩阵的结构拼接。
注意:,并不是任意两个三维矩阵都能相乘,其必须满足两个条件:

1:两个矩阵的后两个维度构成的二维矩阵之间必须满足二维矩阵相乘的条件,即第一个矩阵的列数等于第二个矩阵的行数
2:两个矩阵的第0维分量数必须相等(每个分量对应相乘) 或 有一方为1(broadcast-广播机制) —-反例见下方第3种情况

1-(2,2,2)*(2,2,2)

#三维乘三维 (2,2,2)*(2,2,2)
#计算时都是二维乘二维,第三维度反映二维矩阵的拼接信息;对应位置二维矩阵相乘
import numpy as np

a=np.linspace(1,8,8).reshape(2,2,2)
# print(a)
e = np.array([[[1,0],[0,1]]])
f = np.array([[[0,1],[1,0]]])
b = np.vstack((e,f))
c = np.matmul(a,b)
print('a:\n',a)
print('b:\n',b)
print('ab:\n',c)

在这里插入图片描述

2-(2,2,2)*(1,2,2)

#三维乘三维 (2,2,2)*(1,2,2)
#广播机制(broadcast)
import numpy as np

a=np.linspace(1,8,8).reshape(2,2,2)
# print(a)
b = np.array([[[0,1],[1,0]]])
c = np.matmul(a,b)
print('a:\n',a)
print('b:\n',b)
print('ab:\n',c)

在这里插入图片描述

3-(3,2,2)*(2,2,2)–失败

第0维分量数不满足条件2,不能相乘

# 三维乘三维--不同形状:(4,2,2)*(2,2,2)
import numpy as np

a=np.linspace(1,16,16).reshape(4,2,2)
# print(a)
e = np.array([[[1,0],[0,1]]])
f = np.array([[[0,1],[1,0]]])
b = np.vstack((e,f))
c = np.matmul(a,b)
print('a:\n',a)
print('b:\n',b)
print('c:\n',c)

在这里插入图片描述

多维乘多维

与三维乘三维类似,可乘条件2改为:除最后两维外,每一维的分量数必须对应相等(每个分量对应相乘) 或 有一方为1(broadcast-广播机制)

#各维度的分量相互对应,最终仍是计算二维乘二维
import numpy as np

a=np.linspace(1,16,16).reshape(2,2,2,2)
b = np.ones((2,2,2,2)) #全1矩阵
c = np.matmul(a,b)
print('a:\n',a)
print('b:\n',b)
print('ab:\n',c)

在这里插入图片描述

参考资料

知乎:多维矩阵相乘的可视化

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/230764.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • iOS:获取 NSDate 的年

    iOS:获取 NSDate 的年

  • 自定义键盘(二)[通俗易懂]

    自定义键盘(二)[通俗易懂]自定义键盘(二)

  • QThread介绍

    QThread介绍在程序设计中,为了不影响主程序的执行,常常把耗时操作放到一个单独的线程中执行。Qt对多线程操作有着完整的支持,Qt中通过继承QThread并重写run()方法的方式实现多线程代码的编写。针对线程之间的同步与互斥问题,Qt还提供了QMutex、QReadWriteLock、QwaitCondition、QSemaphore等多个类来实现。本篇博客将针对以下几个方面进行讲解[1]QThread的常用接口以及QThread的实现[2]QThread的信号事件[3]QThread执行完后自动释放内存

  • sql语句查询前100条数据_sql取前100条数据

    sql语句查询前100条数据_sql取前100条数据mysql查询前100条数据云服务器(ElasticComputeService,简称ECS)是阿里云提供的性能卓越、稳定可靠、弹性扩展的IaaS(InfrastructureasaService)级别云计算服务。云服务器ECS免去了您采购IT硬件的前期准备,让您像使用水、电、天然气等公共资源一样便捷、高效地使用服务器,实现计算资源的即开即用和弹性伸缩。阿里云ECS持续提供创新型服务器,…

  • pycharm安装模块方法

    pycharm安装模块方法一.打开pycharm二.点开file三.点击Settings,点击ProjectInterpreter,选择右上角+四.进入后,在搜索框搜索需要安装的模块,选中安装击ProjectInterpreter转载于:https://www.cnblogs.com/jinxf/p/9160645.html…

  • [CNN] 卷积、反卷积、池化、反池化「建议收藏」

    [CNN] 卷积、反卷积、池化、反池化「建议收藏」之前一直太忙,没时间整理,这两天抽出点时间整理一下卷积、反卷积、池化、反池化的内容。一、卷积1、卷积的简单定义卷积神经网络中的卷积操作可以看做是输入和卷积核的内积运算。其运算过程非常容易理解,下面会有详细解释。2、举例解释(1)为了方便直接解释,我们首先以一个通道为例进行讲解,首先明确概念:1)输入是一个5*5的图片,其像素值如下:[11100011100011100110011…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号