不同维度矩阵相乘[通俗易懂]

不同维度矩阵相乘[通俗易懂]在深度学习中经常会遇到不同维度的矩阵相乘的情况,本文会通过一些例子来展示不同维度矩阵乘法的过程。总体原则:在高维矩阵中取与低维矩阵相同维度的分片来与低维矩阵相乘,结果再按分片时的顺序还原为高维矩阵。相乘结果的维度与原来的高维矩阵一致。二维乘一维三维乘一维三维乘二维…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全家桶1年46,售后保障稳定

前言

在深度学习中经常会遇到不同维度的矩阵相乘的情况,本文会通过一些例子来展示不同维度矩阵乘法的过程。

总体原则:在高维矩阵中取与低维矩阵相同维度的子矩阵来与低维矩阵相乘,结果再按子矩阵的排列顺序还原为高维矩阵。相乘结果的维度与原来的高维矩阵一致。
具体来说,当一方为一维矩阵时,另一方取其最后一维子矩阵来做乘法;当两方都是大于等于2维的矩阵时,取各自的最后两维构成的子矩阵来做乘法,其他维度体现结果的拼接信息,不参与运算(为batch训练提供了便利,batch中各样本的顺序在矩阵运算前后保持一致)。

实例:下面我们从低维到高维,依次演示不同维度矩阵相乘的结果。

二维乘一维

二维矩阵依次取出一维的行向量与一维矩阵做内积

#二维乘一维
import numpy as np

a = np.linspace(1,4,4).reshape(2,2)
b = np.array([1,1])
c = np.matmul(a,b)
print('a:\n',a)
print('b:\n',b)
print('ab:\n',c)

Jetbrains全家桶1年46,售后保障稳定

在这里插入图片描述

三维乘一维

三维矩阵包含两个二维矩阵,分别将这两个二维矩阵与一维矩阵相乘(乘积为一维),结果按原来的顺序拼接起来,构成一个二维矩阵

#三维乘一维
import numpy as np

a = np.linspace(1,8,8).reshape(2,2,2)
b = np.array([1,1])
c = np.matmul(a,b)
print('a:\n',a)
print('b:\n',b)
print('ab:\n',c)

在这里插入图片描述

二维乘二维

最常见的矩阵相乘形式

#二维乘二维
import numpy as np

a = np.linspace(1,4,4).reshape(2,2)
b = np.ones((2,2))
c = np.matmul(a,b)
print('a:\n',a)
print('b:\n',b)
print('ab:\n',c)

在这里插入图片描述

三维乘二维

将三维矩阵中的后两维组成的二维子矩阵分别与二维矩阵相乘(二维),结果再按原顺序拼接起来(三维)

#相当于三维矩阵里的二维分量分别与二维矩阵相乘,再拼接起来
import numpy as np

a=np.linspace(1,8,8).reshape(2,2,2)
# print(a)
b = np.array([[1,0],[0,1]]) #单位矩阵
c = np.matmul(a,b)
print('a:\n',a)
print('b:\n',b)
print('ab:\n',c)

在这里插入图片描述

三维乘三维

两个三维矩阵中对应位置的二维子矩阵分别相乘,结果按第0维分量更多的那个矩阵的结构拼接。
注意:,并不是任意两个三维矩阵都能相乘,其必须满足两个条件:

1:两个矩阵的后两个维度构成的二维矩阵之间必须满足二维矩阵相乘的条件,即第一个矩阵的列数等于第二个矩阵的行数
2:两个矩阵的第0维分量数必须相等(每个分量对应相乘) 或 有一方为1(broadcast-广播机制) —-反例见下方第3种情况

1-(2,2,2)*(2,2,2)

#三维乘三维 (2,2,2)*(2,2,2)
#计算时都是二维乘二维,第三维度反映二维矩阵的拼接信息;对应位置二维矩阵相乘
import numpy as np

a=np.linspace(1,8,8).reshape(2,2,2)
# print(a)
e = np.array([[[1,0],[0,1]]])
f = np.array([[[0,1],[1,0]]])
b = np.vstack((e,f))
c = np.matmul(a,b)
print('a:\n',a)
print('b:\n',b)
print('ab:\n',c)

在这里插入图片描述

2-(2,2,2)*(1,2,2)

#三维乘三维 (2,2,2)*(1,2,2)
#广播机制(broadcast)
import numpy as np

a=np.linspace(1,8,8).reshape(2,2,2)
# print(a)
b = np.array([[[0,1],[1,0]]])
c = np.matmul(a,b)
print('a:\n',a)
print('b:\n',b)
print('ab:\n',c)

在这里插入图片描述

3-(3,2,2)*(2,2,2)–失败

第0维分量数不满足条件2,不能相乘

# 三维乘三维--不同形状:(4,2,2)*(2,2,2)
import numpy as np

a=np.linspace(1,16,16).reshape(4,2,2)
# print(a)
e = np.array([[[1,0],[0,1]]])
f = np.array([[[0,1],[1,0]]])
b = np.vstack((e,f))
c = np.matmul(a,b)
print('a:\n',a)
print('b:\n',b)
print('c:\n',c)

在这里插入图片描述

多维乘多维

与三维乘三维类似,可乘条件2改为:除最后两维外,每一维的分量数必须对应相等(每个分量对应相乘) 或 有一方为1(broadcast-广播机制)

#各维度的分量相互对应,最终仍是计算二维乘二维
import numpy as np

a=np.linspace(1,16,16).reshape(2,2,2,2)
b = np.ones((2,2,2,2)) #全1矩阵
c = np.matmul(a,b)
print('a:\n',a)
print('b:\n',b)
print('ab:\n',c)

在这里插入图片描述

参考资料

知乎:多维矩阵相乘的可视化

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/230764.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

  • windows自带的集群软件_服务器集群管理软件

    windows自带的集群软件_服务器集群管理软件MSCS,SAFEKIT,AUOTOSTART,LIFEKEEPER,ROSE

    2022年10月16日
  • css3 transition用法(很详细)

    css3 transition用法(很详细)解释transition(CSS属性)是transition-property,transition-duration,transition-timing-function和transition-delay的一个简写属性。transition可以为一个元素在不同状态之间切换的时候定义不同的过渡效果。以下是属性解释。值描述transition-property指定CSS属性的name,transition效果transition-durationtransit

  • java实战——图书管理系统

    因为这个写的比较完整,所以简单说明一下过程中使用的EJB和RMI两个东西。EJB实现原理:就是把原来放到客户端实现的代码放到服务器端,并依靠RMI进行通信。RMI实现原理:就是通过Java对象可序列化机制实现分布计算。好了,没了,就这么简单…想稍微深入了解一下的看一下这个好了,我就不再赘述。https://blog.csdn.net/lovechuanyu/article/…

  • HTTP_REFERER的用法及伪造

    HTTP_REFERER的用法及伪造

    2021年10月30日
  • idea替换文本快捷键_idea 替换整个项目某个单词

    idea替换文本快捷键_idea 替换整个项目某个单词ctrl+f是查找,ctrl+r是替换1、“ctrl+r”快捷键,用于当前文件内容替换,指的是在当前打开的文件中替换匹配的字符,只操作一个文件;2、“ctrl+shift+r”快捷键,用于在路径中替换。

  • 安防基础知识

    安防基础知识一、目前安防视频监控的普遍现状:1,前端主要以模拟摄像机为主。模拟摄像机的天生弊端 导致监控录像画质无法超越D1。2,模拟信号收到电磁干扰,画面常常有雪花噪点和干扰条纹等。3,监控录像的噪点与干扰导致录像码流(硬盘消耗)浪费。4,模拟监控布线多而繁琐。

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号