Delegates and Events in C# .NET

Delegates and Events in C# .NETOverView Allofushavebeenexposedtoeventdrivenprogrammingofsomesortortheother.C#addsonvaluetotheoftenmentionedworldofeventdrivenprogrammingbyaddingsupportthrou

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全家桶1年46,售后保障稳定

OverView

 

All of us have been exposed to event driven programming of some sort or the other. C# adds on value to the often mentioned world of event driven programming by adding support through events and delegates. The emphasis of this article would be to identify what exactly happens when you add an event handler to your common UI controls. A simple simulation of what could possibly be going on behind the scenes when the AddOnClick or any similar event is added to the Button class will be explained. This will help you understand better the nature of event handling using multi cast delegates.

Delegates

A delegate in C# is similar to a function pointer in C or C++. Using a delegate allows the programmer to encapsulate a reference to a method inside a delegate object. The delegate object can then be passed to code which can call the referenced method, without having to know at compile time which method will be invoked.

Call a Function directly – No Delegate

In most cases, when we call a function, we specify the function to be called directly. If the class MyClass has a function named Process, we’d normally call it like this (SimpleSample.cs):

using System;
 
namespace Akadia.NoDelegate
{

    public class MyClass
    {

        public void Process()
        {

            Console.WriteLine(“Process() begin”);
            Console.WriteLine(“Process() end”);
        }
    }
 
    public class Test
    {

        static void Main(string[] args)
        {

            MyClass myClass = new MyClass();
            myClass.Process();
        }
    }
}

That works well in most situations. Sometimes, however, we don’t want to call a function directly – we’d like to be able to pass it to somebody else so that they can call it. This is especially useful in an event-driven system such as a graphical user interface, when I want some code to be executed when the user clicks on a button, or when I want to log some information but can’t specify how it is logged.

The very basic Delegate

An interesting and useful property of a delegate is that it does not know or care about the class of the object that it references. Any object will do; all that matters is that the method’s argument types and return type match the delegate’s. This makes delegates perfectly suited for “anonymous” invocation.

The signature of a single cast delegate is shown below:

delegate result-type identifier ([parameters]);

where:

  • result-type: The result type, which matches the return type of the function.
  • identifier: The delegate name.
  • parameters: The Parameters, that the function takes.

Examples:

public delegate void SimpleDelegate ()

This declaration defines a delegate named SimpleDelegate, which will encapsulate any method that takes
no parameters and returns no value.

public delegate int ButtonClickHandler (object obj1, object obj2)

This declaration defines a delegate named ButtonClickHandler, which will encapsulate any method that takes
two objects as parameters and returns an int.

A delegate will allow us to specify what the function we’ll be calling looks like without having to specify which function to call. The declaration for a delegate looks just like the declaration for a function, except that in this case, we’re declaring the signature of functions that this delegate can reference.

There are three steps in defining and using delegates:

  • Declaration
  • Instantiation
  • Invocation

A very basic example (SimpleDelegate1.cs):

using System;

namespace Akadia.BasicDelegate
{

    // Declaration
    public delegate void SimpleDelegate();

    class TestDelegate
    {

        public static void MyFunc()
        {

            Console.WriteLine(“I was called by delegate …”);
        }

        public static void Main()
        {

            // Instantiation
            SimpleDelegate simpleDelegate = new SimpleDelegate(MyFunc);

            // Invocation
            simpleDelegate();
        }
    }
}

Compile an test:

# csc SimpleDelegate1.cs
# SimpleDelegate1.exe
I was called by delegate …

Calling Static Functions

For our next, more advanced example (SimpleDelegate2.cs), declares a delegate that takes a single string parameter and has no return type:

using System;

namespace Akadia.SimpleDelegate
{

    // Delegate Specification
    public class MyClass
    {

        // Declare a delegate that takes a single string parameter
        // and has no return type.

        public delegate void LogHandler(string message);

        // The use of the delegate is just like calling a function directly,
        // though we need to add a check to see if the delegate is null
        // (that is, not pointing to a function) before calling the function.

        public void Process(LogHandler logHandler)
        {

            if (logHandler != null)
            {

                logHandler(“Process() begin”);
            }

            if (logHandler != null)
            {

                logHandler (“Process() end”);
            }
        }
    }

    // Test Application to use the defined Delegate
    public class TestApplication
    {

        // Static Function: To which is used in the Delegate. To call the Process()
        // function, we need to declare a logging function: Logger() that matches
        // the signature of the delegate.

        static void Logger(string s)
        {

            Console.WriteLine(s);
        }

        static void Main(string[] args)
        {

            MyClass myClass = new MyClass();

            // Crate an instance of the delegate, pointing to the logging function.
            // This delegate will then be passed to the Process() function.

            MyClass.LogHandler myLogger = new MyClass.LogHandler(Logger);
            myClass.Process(myLogger);
        }
    }
}

Compile an test:

# csc SimpleDelegate2.cs
# SimpleDelegate2.exe
Process() begin
Process() end

Calling Member Functions

In the simple example above, the Logger( ) function merely writes the string out. A different function might want to log the information to a file, but to do this, the function needs to know what file to write the information to (SimpleDelegate3.cs)

using System;
using System.IO;

namespace Akadia.SimpleDelegate
{

    // Delegate Specification
    public class MyClass
    {

        // Declare a delegate that takes a single string parameter
        // and has no return type.

        public delegate void LogHandler(string message);

        // The use of the delegate is just like calling a function directly,
        // though we need to add a check to see if the delegate is null
        // (that is, not pointing to a function) before calling the function.

        public void Process(LogHandler logHandler)
        {

            if (logHandler != null)
            {

                logHandler(“Process() begin”);
            }

            if (logHandler != null)
            {

                logHandler (“Process() end”);
            }
        }
    }

    // The FileLogger class merely encapsulates the file I/O
    public class FileLogger
    {

        FileStream fileStream;
        StreamWriter streamWriter;

        // Constructor
        public FileLogger(string filename)
        {

            fileStream = new FileStream(filename, FileMode.Create);
            streamWriter = new StreamWriter(fileStream);
        }

        // Member Function which is used in the Delegate
        public void Logger(string s)
        {

            streamWriter.WriteLine(s);
        }

        public void Close()
        {

            streamWriter.Close();
            fileStream.Close();
        }
    }

    // Main() is modified so that the delegate points to the Logger()
    // function on the fl instance of a FileLogger. When this delegate
    // is invoked from Process(), the member function is called and
    // the string is logged to the appropriate file.

    public class TestApplication
    {

        static void Main(string[] args)
        {

            FileLogger fl = new FileLogger(“process.log”);

            MyClass myClass = new MyClass();

            // Crate an instance of the delegate, pointing to the Logger()
            // function on the fl instance of a FileLogger.

            MyClass.LogHandler myLogger = new MyClass.LogHandler(fl.Logger);
            myClass.Process(myLogger);
            fl.Close();
        }
    }
}

The cool part here is that we didn’t have to change the Process() function; the code to all the delegate is the same regardless of whether it refers to a static or member function.

Compile an test:

# csc SimpleDelegate3.cs
# SimpleDelegate3.exe
# cat process.log
Process() begin
Process() end

Multicasting

Being able to point to member functions is nice, but there are more tricks you can do with delegates. In C#, delegates are multicast, which means that they can point to more than one function at a time (that is, they’re based off the System.MulticastDelegate type). A multicast delegate maintains a list of functions that will all be called when the delegate is invoked. We can add back in the logging function from the first example, and call both delegates. Here’s what the code looks like:

using System;
using System.IO;

namespace Akadia.SimpleDelegate
{

    // Delegate Specification
    public class MyClass
    {

        // Declare a delegate that takes a single string parameter
        // and has no return type.

        public delegate void LogHandler(string message);

        // The use of the delegate is just like calling a function directly,
        // though we need to add a check to see if the delegate is null
        // (that is, not pointing to a function) before calling the function.

        public void Process(LogHandler logHandler)
        {

            if (logHandler != null)
            {

                logHandler(“Process() begin”);
            }

            if (logHandler != null)
            {

                logHandler (“Process() end”);
            }
        }
    }

    // The FileLogger class merely encapsulates the file I/O
    public class FileLogger
    {

        FileStream fileStream;
        StreamWriter streamWriter;

        // Constructor
        public FileLogger(string filename)
        {

            fileStream = new FileStream(filename, FileMode.Create);
            streamWriter = new StreamWriter(fileStream);
        }

        // Member Function which is used in the Delegate
        public void Logger(string s)
        {

            streamWriter.WriteLine(s);
        }

        public void Close()
        {

            streamWriter.Close();
            fileStream.Close();
        }
    }

    // Test Application which calls both Delegates
    public class TestApplication
    {

        
// Static Function which is used in the Delegate
        static void Logger(string s)
        {

            Console.WriteLine(s);
        }

        static void Main(string[] args)
        {

            FileLogger fl = new FileLogger(“process.log”);

            MyClass myClass = new MyClass();

            // Crate an instance of the delegates, pointing to the static
            // Logger() function defined in the TestApplication class and
            // then to member function on the fl instance of a FileLogger.

            MyClass.LogHandler myLogger = null;
            myLogger += new MyClass.LogHandler(Logger);
            myLogger += new MyClass.LogHandler(fl.Logger);

            myClass.Process(myLogger);
            fl.Close();
        }
    }
}

Compile an test:

# csc SimpleDelegate4.cs
# SimpleDelegate4.exe
Process() begin
Process() end

# cat process.log
Process() begin
Process() end

Events

The Event model in C# finds its roots in the event programming model that is popular in asynchronous programming. The basic foundation behind this programming model is the idea of “publisher and subscribers.” In this model, you have publishers who will do some logic and publish an “event.” Publishers will then send out their event only to subscribers who have subscribed to receive the specific event.

In C#, any object can publish a set of events to which other applications can subscribe. When the publishing class raises an event, all the subscribed applications are notified. The following figure shows this mechanism.

Delegates and Events in C# .NET

Conventions

The following important conventions are used with events:

  • Event Handlers in the .NET Framework return void and take two parameters.
  • The first paramter is the source of the event; that is the publishing object.
  • The second parameter is an object derived from EventArgs.
  • Events are properties of the class publishing the event.
  • The keyword event controls how the event property is accessed by the subscribing classes.

Simple Event

Let’s modify our logging example from above to use an event rather than a delegate:

using System;
using System.IO;

namespace Akadia.SimpleEvent
{

    /* ========= Publisher of the Event ============== */
    public class MyClass
    {

        // Define a delegate named LogHandler, which will encapsulate
        // any method that takes a string as the parameter and returns no value

        public delegate void LogHandler(string message);
 
       
// Define an Event based on the above Delegate

       
public event LogHandler Log;
 

        // Instead of having the Process() function take a delegate
        // as a parameter, we’ve declared a Log event. Call the Event,
        // using the OnXXXX Method, where XXXX is the name of the Event.

        public void Process()
        {

            OnLog(“Process() begin”);
            OnLog
(“Process() end”);
        }
 
        // By Default, create an OnXXXX Method, to call the Event
        protected void OnLog(string message)
        {

            if (Log != null)
            {

                Log(message);
            }
        }

    }
 
    // The FileLogger class merely encapsulates the file I/O
    public class FileLogger
    {

        FileStream fileStream;
        StreamWriter streamWriter;
 
        // Constructor
        public FileLogger(string filename)
        {

            fileStream = new FileStream(filename, FileMode.Create);
            streamWriter = new StreamWriter(fileStream);
        }
 
        // Member Function which is used in the Delegate
        public void Logger(string s)
        {

            streamWriter.WriteLine(s);
        }
 
        public void Close()
        {

            streamWriter.Close();
            fileStream.Close();
        }
    }
 
    /* ========= Subscriber of the Event ============== */
   
// It’s now easier and cleaner to merely add instances
    // of the delegate to the event, instead of having to
    // manage things ourselves

    public class TestApplication
    {

        static void Logger(string s)
        {

            Console.WriteLine(s);
        }
 
        static void Main(string[] args)
        {

            FileLogger fl = new FileLogger(“process.log”);
            MyClass myClass = new MyClass();
 
            // Subscribe the Functions Logger and fl.Logger
            myClass.Log += new MyClass.LogHandler(Logger);
            myClass.Log += new MyClass.LogHandler(fl.Logger);

            // The Event will now be triggered in the Process() Method
            myClass.Process();

 
            fl.Close();
        }
    }
}

Compile an test:

# csc SimpleEvent.cs
# SimpleEvent.exe
Process() begin
Process() end

# cat process.log
Process() begin
Process() end

The Second Change Event Example

Suppose you want to create a Clock class that uses events to notify potential subscribers whenever the local time changes value by one second. Here is the complete, documented example:

 

using System;
using System.Threading;

namespace SecondChangeEvent
{

   /* ======================= Event Publisher =============================== */

   // Our subject — it is this class that other classes
   // will observe. This class publishes one event:
   // SecondChange. The observers subscribe to that event.

   public class Clock
   {

      // Private Fields holding the hour, minute and second
      private int _hour;
      private int _minute;
      private int _second;

      // The delegate named SecondChangeHandler, which will encapsulate
      // any method that takes a clock object and a TimeInfoEventArgs
      // object as the parameter and returns no value. It’s the
      // delegate the subscribers must implement.

      public delegate void SecondChangeHandler (
         object clock,
         TimeInfoEventArgs timeInformation
      );

      // The event we publish
      public event SecondChangeHandler SecondChange;

      // The method which fires the Event
      protected void OnSecondChange(
         object clock,
         TimeInfoEventArgs timeInformation
      )
      {

         // Check if there are any Subscribers
         if (SecondChange != null)
         {

            // Call the Event
            SecondChange(clock,timeInformation);
         }
      }

      // Set the clock running, it will raise an
      // event for each new second

      public void Run()
      {

         for(;;)
         {

            // Sleep 1 Second
            Thread.Sleep(1000);

            // Get the current time
            System.DateTime dt = System.DateTime.Now;

            // If the second has changed
            // notify the subscribers

            if (dt.Second != _second)
            {

               // Create the TimeInfoEventArgs object
               // to pass to the subscribers

               TimeInfoEventArgs timeInformation =
                  new TimeInfoEventArgs(
                  dt.Hour,dt.Minute,dt.Second);

               // If anyone has subscribed, notify them
               OnSecondChange (this,timeInformation);
            }

            // update the state
            _second = dt.Second;
            _minute = dt.Minute;
            _hour = dt.Hour;

         }
      }
   }

   // The class to hold the information about the event
   // in this case it will hold only information
   // available in the clock class, but could hold
   // additional state information

   public class TimeInfoEventArgs : EventArgs
   {

      public TimeInfoEventArgs(int hour, int minute, int second)
      {

         this.hour = hour;
         this.minute = minute;
         this.second = second;
      }
      public readonly int hour;
      public readonly int minute;
      public readonly int second;
   }

   /* ======================= Event Subscribers =============================== */

   // An observer. DisplayClock subscribes to the
   // clock’s events. The job of DisplayClock is
   // to display the current time

   public class DisplayClock
   {

      // Given a clock, subscribe to
      // its SecondChangeHandler event

      public void Subscribe(Clock theClock)
      {

         theClock.SecondChange +=
            new Clock.SecondChangeHandler(TimeHasChanged);

      }

      // The method that implements the
      // delegated functionality

      public void TimeHasChanged(
         object theClock, TimeInfoEventArgs ti)
      {

         Console.WriteLine(“Current Time: {0}:{1}:{2}”,
            ti.hour.ToString(),
            ti.minute.ToString(),
            ti.second.ToString());
      }
   }

   // A second subscriber whose job is to write to a file
   public class LogClock
   {

      public void Subscribe(Clock theClock)
      {

         theClock.SecondChange +=
            new Clock.SecondChangeHandler(WriteLogEntry);

      }

      // This method should write to a file
      // we write to the console to see the effect

      // this object keeps no state
      public void WriteLogEntry(
         object theClock, TimeInfoEventArgs ti)
      {

         Console.WriteLine(“Logging to file: {0}:{1}:{2}”,
            ti.hour.ToString(),
            ti.minute.ToString(),
            ti.second.ToString());
      }
   }

   /* ======================= Test Application =============================== */

   // Test Application which implements the
   // Clock Notifier – Subscriber Sample

   public class Test
   {

      public static void Main()
      {

         // Create a new clock
         Clock theClock = new Clock();

         // Create the display and tell it to
         // subscribe to the clock just created

         DisplayClock dc = new DisplayClock();
         dc.Subscribe(theClock);

         // Create a Log object and tell it
         // to subscribe to the clock

         LogClock lc = new LogClock();
         lc.Subscribe(theClock);

         // Get the clock started
         theClock.Run();
      }
   }
}

Conclusion

The Clock class from the last sample could simply print the time rather tahn raising an event, so why bother with the introduction of using delegates? The advantage of the publish / subscribe idiom is that any number of classes can be notified when an event is raised. The subscribing classes do not need to know how the Clock works, and the Clock does not need to know what they are going to do in response to the event. Similarly a button can publish an Onclick event, and any number of unrelated objects can subscribe to that event, receiving notification when the button is clicked.

The publisher and the subscribers are decoupled by the delegate. This is highly desirable as it makes for more flexible and robust code. The clock can change how it detects time without breaking any of the subscribing classes. The subscribing classes can change how they respond to time changes without breaking the Clock. The two classes spin indepentdently of one another, which makes for code that is easier to maintain.

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/228002.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

  • bytebuffer的容量极限和位置_bytebuffer写文件

    bytebuffer的容量极限和位置_bytebuffer写文件缓冲区(Buffer)就是在内存中预留指定大小的存储空间用来对输入/输出(I/O)的数据作临时存储,这部分预留的内存空间就叫做缓冲区:使用缓冲区有这么两个好处:1、减少实际的物理读写次数2、缓冲区在创建时就被分配内存,这块内存区域一直被重用,可以减少动态分配和回收内存的次数举个简单的例子,比如A地有1w块砖要搬到B地由于没有工具(缓冲区),我们一次只能搬一本,那么就要搬1w次(实际读写次数)如果A…

  • Linux常用命令总结(mysql数据库常用命令)

    熬夜爆肝Linux集合,还不收藏?

  • 几款.Net加密/加壳工具的比较

    几款.Net加密/加壳工具的比较前言  使用过.NET的程序员都知道,.NET是一个巨大的跨时代进步,它开发效率高、功能强、界面观、耐用、新的语言C#已经提交为行业规范、CLR共公运行库资源丰富,这所有的特点标志着它成为主流编程语言是必然的。     可是它也有一个缺点,那就是编译好的程序集可以完全反编译成源代码,这给一些不法份子提供了很好的机会,试想想,您辛苦的劳动成果就这样给了别人;所以如何保护我们的知识产

  • 线程死锁的原因及解决方法_多线程队列

    线程死锁的原因及解决方法_多线程队列很久之前就听过互联架构中有三高,高可用、高并发、高性能,多线程是处理高并发问题的基石,起步阶段一定要对线程有一个系统深刻的印象,为以后做准备

    2022年10月15日
  • c++ CreateThread

    c++ CreateThread1.基本使用方式1.1DWORDWINAPI函数名(LPVOIDlpParam);//标准格式DWORDWINAPI函数名(LPVOIDlpParam){return0;}CreateThread(NULL,0,函数名,0,0,0);1.2使用void函数名()此种线程声明方式时,lpStartAddress需要加入LPTHREAD_START_ROUTINE转换void函数名(){return;}CreateThre

  • Flowable 6.7.0版本新功能特性

    Flowable 6.7.0版本新功能特性Flowable6.7.0版本主要增强的是BPM异步功能:1、实现了全局锁定机制,以更好地支持在具有多个Flowable引擎的设置中使用异步执行器2、添加了对多实例变量聚合的支持3、当多实例是一个自动步骤或一系列自动步骤时,为异步多实例使用添加了一个优化标志。如果设置,引擎将大大降低资源消耗,并删除乐观锁定异常,通常会提高性能4、从Task监听器抛出的异常不再包含在FlowableException中5、在此版本中,已升级到SpringBoot2.5.4和Spri

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号