大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。
Jetbrains全家桶1年46,售后保障稳定
一, 最长递增子序列问题的描述
设L=<a1,a2,…,an>是n个不同的实数的序列,L的递增子序列是这样一个子序列Lin=<aK1,ak2,…,akm>,其中k1<k2<…<km且aK1<ak2<…<akm。求最大的m值。
二, 第一种算法:转化为LCS问题求解
设序列X=<b1,b2,…,bn>是对序列L=<a1,a2,…,an>按递增排好序的序列。那么显然X与L的最长公共子序列即为L的最长递增子序列。这样就把求最长递增子序列的问题转化为求最长公共子序列问题LCS了。
最长公共子序列问题用动态规划的算法可解。设Li=< a1,a2,…,ai>,Xj=< b1,b2,…,bj>,它们分别为L和X的子序列。令C[i,j]为Li与Xj的最长公共子序列的长度。则有如下的递推方程:
这可以用时间复杂度为O(n2)的算法求解,由于这个算法上课时讲过,所以具体代码在此略去。求最长递增子序列的算法时间复杂度由排序所用的O(nlogn)的时间加上求LCS的O(n2)的时间,算法的最坏时间复杂度为O(nlogn)+O(n2)=O(n2)。
下面才是我自己的code(第一种解法)
result:
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/226913.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...