高质量SQL书写的30条建议

高质量SQL书写的30条建议

前言

本文将结合实例demo,阐述30条有关于优化SQL的建议,多数是实际开发中总结出来的,希望对大家有帮助。

1、查询SQL尽量不要使用select *,而是select具体字段。

反例子:

select * from employee;

正例子:

select id,name from employee;

理由:

  • 只取需要的字段,节省资源、减少网络开销。
  • select * 进行查询时,很可能就不会使用到覆盖索引了,就会造成回表查询。

2、如果知道查询结果只有一条或者只要最大/最小一条记录,建议用limit 1

假设现在有employee员工表,要找出一个名字叫jay的人.

CREATE TABLE`employee` (
  `id`int(11) NOTNULL,
  `name`varchar(255) DEFAULTNULL,
  `age`int(11) DEFAULTNULL,
  `date` datetime DEFAULTNULL,
  `sex`int(1) DEFAULTNULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

反例:

select id,name from employee where name='jay'

正例

select id,name from employee where name='jay' limit 1;

理由:

  • 加上limit 1后,只要找到了对应的一条记录,就不会继续向下扫描了,效率将会大大提高。
  • 当然,如果name是唯一索引的话,是不必要加上limit 1了,因为limit的存在主要就是为了防止全表扫描,从而提高性能,
    如果一个语句本身可以预知不用全表扫描,有没有limit,性能的差别并不大。

3、应尽量避免在where子句中使用or来连接条件

新建一个user表,它有一个普通索引userId,表结构如下:

CREATE TABLE`user` (
  `id`int(11) NOTNULL AUTO_INCREMENT,
  `userId`int(11) NOTNULL,
  `age`int(11) NOTNULL,
  `name`varchar(255) NOTNULL,
  PRIMARY KEY (`id`),
  KEY`idx_userId` (`userId`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

假设现在需要查询userid为1或者年龄为18岁的用户,很容易有以下sql

反例:

select * from user where userid = 1 or age = 18

正例:

//使用union all
select * from user where userid = 1
unionall
select * from user where age = 18

//或者分开两条sql写:
select * from user where userid = 1
select * from user where age = 18

理由:

  • 使用or可能会使索引失效,从而全表扫描。

对于or+没有索引的age这种情况,假设它走了userId的索引,但是走到age查询条件时,它还得全表扫描,也就是需要三步过程:全表扫描+索引扫描+合并
如果它一开始就走全表扫描,直接一遍扫描就完事。mysql是有优化器的,处于效率与成本考虑,遇到or条件,索引可能失效,看起来也合情合理。

4、优化limit分页

我们日常做分页需求时,一般会用 limit 实现,但是当偏移量特别大的时候,查询效率就变得低下。

反例:

select id,name,age from employee limit 10000,10

正例:

//方案一 :返回上次查询的最大记录(偏移量)
select id,name from employee where id > 10000 limit 10

//方案二:orderby + 索引
select id,name from employee order by id limit 10000,10

//方案三:在业务允许的情况下限制页数:

理由:

  • 当偏移量最大的时候,查询效率就会越低,因为Mysql并非是跳过偏移量直接去取后面的数据,而是先把偏移量+要取的条数,然后再把前面偏移量这一段的数据抛弃掉再返回的。

  • 如果使用优化方案一,返回上次最大查询记录(偏移量),这样可以跳过偏移量,效率提升不少。

  • 方案二使用order by+索引,也是可以提高查询效率的。

  • 方案三的话,建议跟业务讨论,有没有必要查这么后的分页啦。因为绝大多数用户都不会往后翻太多页。

5、优化你的like语句

日常开发中,如果用到模糊关键字查询,很容易想到like,但是like很可能让你的索引失效。

反例:

select userId,name from user where userId like'%123';

正例:

select userId,name from user where userId like'123%';

理由:

  • 把%放前面,并不走索引,如下:
    图片
  • 把% 放关键字后面,还是会走索引的。如下:
    图片

6、使用where条件限定要查询的数据,避免返回多余的行

假设业务场景是这样:查询某个用户是否是会员。曾经看过老的实现代码是这样。。。

反例:

List<Long> userIds = sqlMap.queryList("select userId fromuserwhere isVip=1");
boolean isVip = userIds.contains(userId);

正例:

Long userId = sqlMap.queryObject("select userId fromuserwhere userId='userId'and isVip='1'")
boolean isVip = userId!=null;

理由:

  • 需要什么数据,就去查什么数据,避免返回不必要的数据,节省开销。

7、尽量避免在索引列上使用mysql的内置函数

业务需求:查询最近七天内登陆过的用户(假设loginTime加了索引)

反例:

select userId,loginTime from loginuser where Date_ADD(loginTime,Interval 7 DAY) >= now();

正例:

explain select userId,loginTime from loginuser where loginTime >= Date_ADD(NOW(),INTERVAL - 7 DAY);

理由:

  • 索引列上使用mysql的内置函数,索引失效

图片

  • 如果索引列不加内置函数,索引还是会走的。

图片

8、应尽量避免在 where 子句中对字段进行表达式操作,这将导致系统放弃使用索引而进行全表扫

反例:

select * from user where age - 1 = 10;

正例:

select * from user where age = 11;

理由:

  • 虽然age加了索引,但是因为对它进行运算,索引直接迷路了。。。
    图片

9、Inner join 、left join、right join,优先使用Inner join,如果是left join,左边表结果尽量小

  • Inner join 内连接,在两张表进行连接查询时,只保留两张表中完全匹配的结果集
  • left join 在两张表进行连接查询时,会返回左表所有的行,即使在右表中没有匹配的记录。
  • right join 在两张表进行连接查询时,会返回右表所有的行,即使在左表中没有匹配的记录。

都满足SQL需求的前提下,推荐优先使用Inner join(内连接),如果要使用left join,左边表数据结果尽量小,如果有条件的尽量放到左边处理。

反例:

select * from tab1 t1 left join tab2 t2 on t1.size = t2.size where t1.id > 2;

正例:

select * from (select * from tab1 where id >2) t1 left join tab2 t2 on t1.size = t2.size;

理由:

  • 如果inner join是等值连接,或许返回的行数比较少,所以性能相对会好一点。
  • 同理,使用了左连接,左边表数据结果尽量小,条件尽量放到左边处理,意味着返回的行数可能比较少。

10、应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。

反例:

select age,name from user where age <> 18;

正例:

//可以考虑分开两条sql写
select age,name from user where age < 18;
select age,name from user where age > 18;

理由:

  • 使用 != 和 <> 很可能会让索引失效

图片

11、使用联合索引时,注意索引列的顺序,一般遵循最左匹配原则。

表结构:(有一个联合索引idx_userid_age,userId在前,age在后)

CREATE TABLE `user` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `userId` int(11) NOT NULL,
  `age` int(11) DEFAULT NULL,
  `name` varchar(255) NOT NULL,
  PRIMARY KEY (`id`),
  KEY `idx_userid_age` (`userId`,`age`) USING BTREE
) ENGINE=InnoDB AUTO_INCREMENT=2 DEFAULT CHARSET=utf8;

反例:

select * from user where age = 10;

图片

正例:

//符合最左匹配原则
select * from user where userid = 10 and age = 10;
//符合最左匹配原则
select * from user where userid =10;

img

img

理由:

  • 当我们创建一个联合索引的时候,如(k1,k2,k3),相当于创建了(k1)、(k1,k2)和(k1,k2,k3)三个索引,这就是最左匹配原则。
  • 联合索引不满足最左原则,索引一般会失效,但是这个还跟Mysql优化器有关的。

12、对查询进行优化,应考虑在 where 及 order by 涉及的列上建立索引,尽量避免全表扫描。

反例:

select * from user where address ='深圳' order by age;

img

正例:

添加索引
alter table user add index idx_address_age (address,age)

img

13、如果插入数据过多,考虑批量插入。

反例:

for(User u :list){
 INSERT into user(name,age) values(#name#,#age#)   
}

正例:

//一次500批量插入,分批进行
insert into user(name,age) values
<foreach collection="list" item="item" index="index" separator=",">
    (#{item.name},#{item.age})
</foreach>

理由:

  • 批量插入性能好,更加省时间

打个比喻:假如你需要搬一万块砖到楼顶,你有一个电梯,电梯一次可以放适量的砖(最多放500),你可以选择一次运送一块砖,也可以一次运送500,你觉得哪个时间消耗大?

14、在适当的时候,使用覆盖索引。

覆盖索引能够使得你的SQL语句不需要回表,仅仅访问索引就能够得到所有需要的数据,大大提高了查询效率。

反例:

// like模糊查询,不走索引了
select * from user where userid like '%123%'

img

正例:

//id为主键,那么为普通索引,即覆盖索引登场了。
select id,name from user where userid like '%123%';

img

15、慎用distinct关键字

distinct 关键字一般用来过滤重复记录,以返回不重复的记录。在查询一个字段或者很少字段的情况下使用时,给查询带来优化效果。但是在字段很多的时候使用,却会大大降低查询效率。

反例:

SELECT DISTINCT * from user;

正例:

select DISTINCT name from user;

理由:

  • 带distinct的语句cpu时间和占用时间都高于不带distinct的语句。因为当查询很多字段时,如果使用distinct,数据库引擎就会对数据进行比较,过滤掉重复数据,然而这个比较,过滤的过程会占用系统资源,cpu时间。

16、删除冗余和重复索引

反例:

  KEY `idx_userId` (`userId`)
  KEY `idx_userId_age` (`userId`,`age`)

正例:

//删除userId索引,因为组合索引(A,B)相当于创建了(A)和(A,B)索引
  KEY `idx_userId_age` (`userId`,`age`)

理由:

  • 重复的索引需要维护,并且优化器在优化查询的时候也需要逐个地进行考虑,这会影响性能的。

17、如果数据量较大,优化你的修改/删除语句。

避免同时修改或删除过多数据,因为会造成cpu利用率过高,从而影响别人对数据库的访问。

反例:

//一次删除10万或者100万+?
delete from user where id < 100000;
//或者采用单一循环操作,效率低,时间漫长
for(User user:list){
   delete from user;
}

正例:

//分批进行删除,如每次500
delete user where id < 500
delete product where id >= 500 and id < 1000;

理由:

  • 一次性删除太多数据,可能会有lock wait timeout exceed的错误,所以建议分批操作。

18、where子句中考虑使用默认值代替null。

反例:

select * from user where age is not null;

img

正例:

//设置0为默认值
select * from user where age > 0;

img

理由:

  • 并不是说使用了is null 或者 is not null 就会不走索引了,这个跟mysql版本以及查询成本都有关。

如果mysql优化器发现,走索引比不走索引成本还要高,肯定会放弃索引,这些条件!=,is null,is not null经常被认为让索引失效,其实是因为一般情况下,查询的成本高,优化器自动放弃的。

  • 如果把null值,换成默认值,很多时候让走索引成为可能,同时,表达意思会相对清晰一点。

19、不要有超过5个以上的表连接

  • 连表越多,编译的时间和开销也就越大。
  • 把连接表拆开成较小的几个执行,可读性更高。
  • 如果一定需要连接很多表才能得到数据,那么意味着糟糕的设计了。

20、exist & in的合理利用

假设表A表示某企业的员工表,表B表示部门表,查询所有部门的所有员工,很容易有以下SQL:

select * from A where deptId in (select deptId from B);

这样写等价于:

先查询部门表B

select deptId from B

再由部门deptId,查询A的员工

select * from A where A.deptId = B.deptId

可以抽象成这样的一个循环:

   List<> resultSet ;
    for(int i=0;i<B.length;i++) {
          for(int j=0;j<A.length;j++) {
          if(A[i].id==B[j].id) {
             resultSet.add(A[i]);
             break;
          }
       }
    }

显然,除了使用in,我们也可以用exists实现一样的查询功能,如下:

select * from A where exists (select 1 from B where A.deptId = B.deptId);

因为exists查询的理解就是,先执行主查询,获得数据后,再放到子查询中做条件验证,根据验证结果(true或者false),来决定主查询的数据结果是否得意保留。

那么,这样写就等价于:

select * from A,先从A表做循环

select * from B where A.deptId = B.deptId,再从B表做循环.

同理,可以抽象成这样一个循环:

   List<> resultSet ;
    for(int i=0;i<A.length;i++) {
          for(int j=0;j<B.length;j++) {
          if(A[i].deptId==B[j].deptId) {
             resultSet.add(A[i]);
             break;
          }
       }
    }

数据库最费劲的就是跟程序链接释放。假设链接了两次,每次做上百万次的数据集查询,查完就走,这样就只做了两次;相反建立了上百万次链接,申请链接释放反复重复,这样系统就受不了了。即mysql优化原则,就是小表驱动大表,小的数据集驱动大的数据集,从而让性能更优。

因此,我们要选择最外层循环小的,也就是,如果B的数据量小于A,适合使用in,如果B的数据量大于A,即适合选择exist

21、尽量用 union all 替换 union

如果检索结果中不会有重复的记录,推荐union all 替换 union。

反例:

select * from user where userid = 1
union
select * from user where age = 10

正例:

select * from user where userid = 1
union all
select * from user where age = 10

理由:

  • 如果使用union,不管检索结果有没有重复,都会尝试进行合并,然后在输出最终结果前进行排序。如果已知检索结果没有重复记录,使用union all 代替union,这样会提高效率。

22、索引不宜太多,一般5个以内。

  • 索引并不是越多越好,索引虽然提高了查询的效率,但是也降低了插入和更新的效率。
  • insert或update时有可能会重建索引,所以建索引需要慎重考虑,视具体情况来定。
  • 一个表的索引数最好不要超过5个,若太多需要考虑一些索引是否没有存在的必要。

23、尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型

反例:

king_id` varchar(20) NOT NULL COMMENT '守护者Id'

正例:

`king_id` int(11) NOT NULL COMMENT '守护者Id'`

理由:

  • 相对于数字型字段,字符型会降低查询和连接的性能,并会增加存储开销。

24、索引不适合建在有大量重复数据的字段上,如性别这类型数据库字段。

因为SQL优化器是根据表中数据量来进行查询优化的,如果索引列有大量重复数据,Mysql查询优化器推算发现不走索引的成本更低,很可能就放弃索引了。

25、尽量避免向客户端返回过多数据量。

假设业务需求是,用户请求查看自己最近一年观看过的直播数据。

反例:

//一次性查询所有数据回来
select * from LivingInfo where watchId =useId and watchTime >= Date_sub(now(),Interval 1 Y)

正例:

//分页查询
select * from LivingInfo where watchId =useId and watchTime>= Date_sub(now(),Interval 1 Y) limit offset,pageSize

//如果是前端分页,可以先查询前两百条记录,因为一般用户应该也不会往下翻太多页,
select * from LivingInfo where watchId =useId and watchTime>= Date_sub(now(),Interval 1 Y) limit 200;

26、当在SQL语句中连接多个表时,请使用表的别名,并把别名前缀于每一列上,这样语义更加清晰。

反例:

select * from A inner
join B on A.deptId = B.deptId;

正例:

select memeber.name,deptment.deptName from A member inner
join B deptment on member.deptId = deptment.deptId;

27、尽可能使用varchar/nvarchar 代替 char/nchar。

反例:

  `deptName` char(100) DEFAULT NULL COMMENT '部门名称'

正例:

  `deptName` varchar(100) DEFAULT NULL COMMENT '部门名称'

理由:

  • 因为首先变长字段存储空间小,可以节省存储空间。
  • 其次对于查询来说,在一个相对较小的字段内搜索,效率更高。

28、为了提高group by 语句的效率,可以在执行到该语句前,把不需要的记录过滤掉。

反例:

select job,avg(salary) from employee group by job having job ='president' or job = 'managent'

正例:

select job,avg(salary) from employee where job ='president'
or job = 'managent' group by job;

29、若字段类型是字符串,使用where时一定用引号括起来,否则索引失效

反例:

select * from user where userid = 123;

img

正例:

select * from user where userid = '123';

img

理由:

  • 为什么第一条语句未加单引号就不走索引了呢?这是因为不加单引号时,是字符串跟数字的比较,它们类型不匹配,MySQL会做隐式的类型转换,把它们转换为浮点数再做比较。

30、使用explain 分析你SQL的计划

日常开发写SQL的时候,尽量养成一个习惯吧。用explain分析一下你写的SQL,尤其是走不走索引这一块。

explain select * from user where userid = 10086 or age =18;

img

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/2242.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • 【kali】kali设置burpsuite抓包dvwa

    【kali】kali设置burpsuite抓包dvwakali自带burpsuite配置代理burpsuite是通过代理来抓包dvwa的burpsuite:proxy—>options里边监听的应该是127.0.0.1:8080(端口ip如果撞车了都可以自己改)火狐:preferences–>最下边的networksettings点击settings—>从usesysyemproxy改成manualproxyhttp:127.0.0.1port:8080(和burpsuite设置的一样就ok),勾选上u

  • 【SpringBoot】25、SpringBoot中使用Quartz管理定时任务

    【SpringBoot】25、SpringBoot中使用Quartz管理定时任务定时任务在系统中用到的地方很多,例如每晚凌晨的数据备份,每小时获取第三方平台的Token信息等等,之前我们都是在项目中规定这个定时任务什么时候启动,到时间了便会自己启动,那么我们想要停止这个定时任务的时候,就需要去改动代码,还得启停服务器,这是非常不友好的事情直至遇见Quartz,利用图形界面可视化管理定时任务,使得我们对定时任务的管理更加方便,快捷一、Quartz简介Quartz是一个开源的作业调度框架,它完全由Java写成,并设计用于J2SE和J2EE应用中。它提供了巨大的灵活性而不牺牲

    2022年10月22日
  • stm32 SWD调试接口的使用

    stm32 SWD调试接口的使用SWD和传统的调试方式区别   1.SWD模式比JTAG在高速模式下面更加可靠。在大数据量的情况下面JTAG下载程序会失败,但是SWD发生的几率会小很多。基本使用JTAG仿真模式的情况下是可以直接使用SWD模式的,只要你的仿真器支持。所以推荐大家使用这个模式。   2.在大家GPIO刚好缺一个的时候,可以使用SWD仿真,这种模式支持更少的…

  • Oracle实用操作(三)oracle 表名长度的限制

    Oracle实用操作(三)oracle 表名长度的限制Oracle实用操作(三)oracle表名长度的限制1、在新建oracle表的时候,经过查找相关资料oracle表名的最大长度是30,我加上了0331正好是30,多加2为就32了,当然报错了。2、同时有网友说看看descuser_tables,看table_name字段的定义也可以发现,这个很有道理,于是我看了一把.这么看来,表空间名最大长度也是30。看来oracle对30,情有独钟嘛。…

  • 报错注入学习[通俗易懂]

    报错注入学习[通俗易懂]复习完sqlilabs1-4关熟悉了简单sql注入的payload,不用反复看wp的payload,学到了可以0x5c:/%23:#%20:(空格)0x7e=~-1′)unionselect1,(selectgroup_concat(username,0x5c,password)fromusers),3%23遇到第五关报错注入学习文章1学习文章2学习笔记:报错注入原理:报错注入就是利用了数据库的某些机制,人为地制造错误条件,使得查询结果能够出…

  • mysql行转列函数_mysql行转列,函数GROUP_CONCAT(expr)

    mysql行转列函数_mysql行转列,函数GROUP_CONCAT(expr)demo:语句:SELECT’行’id,”product_nameUNIONSELECTid,product_nameFROM`product`WHEREid<5结果:行1icbc2测试测试314笔记本电脑语句:SELECT’行转列后’id,”product_nameUNIONSELECTGROUP_CONCAT(id)id,GROUP_CONCA…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号