大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。
Jetbrains全家桶1年46,售后保障稳定
求解微分方程
desolve函数
S = dsolve(eqn)求解微分方程eqn,其中eqn是符号方程。使用diff和==来表示微分方程。例如,diff(y,x) == y表示方程dy / dx = y。通过指定 eqn为这些方程的向量来求解微分方程组。
S = dsolve(eqn,cond)eqn用初始或边界条件求解cond。
S = dsolve(___,Name,Value) 使用由一个或多个Name,Value对参数指定的附加选项。
[y1,...,yN] = dsolve(___)将解分配给变量y1,...,yN。
求解y关于什么的函数就要声明为y (x) ,必须使用syms来声变量, 否则会被警告
实例1
d d x y ( t ) = − 3 y ( t ) \frac{d}{
{dx}}\operatorname{y} \left( t \right) = – 3\operatorname{y} \left( t \right) dxdy(t)=−3y(t)
%案例一
clear all
clc
syms y(t);
eqn=diff(y,t) == -3*y
F=dsolve(eqn)
latex(F)
C 1 e − 3 t C_{1}\,{\mathrm{e}}^{-3\,t} C1e−3t
实例2
%案例二
clear all
clc
syms y(t) a
eqn = diff(y,t) == a*y
S = dsolve(eqn)
结果和上面相似
实例3
d d x y ( t ) = 3 x 2 \frac{d}{
{dx}}\operatorname{y} \left( t \right) = 3{x^2} dxdy(t)=3x2
%案例三
clear all
clc
syms y(t) x
eqn=diff(y,t)==3*x^2
F=dsolve(eqn)
latex(F)
3 t x 2 + C 1 3\,t\,x^2+C_{1} 3tx2+C1
实例4
d 2 d x 2 y ( t ) = a y ( t ) \frac{
{
{d^2}}}{
{d{x^2}}}\operatorname{y} \left( t \right) = a\operatorname{y} \left( t \right) dx2d2y(t)=ay(t)
%二阶案例一
clear all
clc
syms y(t) a
eqn = diff(y,t,2) == a*y
ySol(t) = dsolve(eqn)
latex(ySol(t))
C 1 e − a t + C 2 e a t C_{1}\,{\mathrm{e}}^{-\sqrt{a}\,t}+C_{2}\,{\mathrm{e}}^{\sqrt{a}\,t} C1e−at+C2eat
求解有条件的微分方程
d y d t = z d z d t = − y \begin{gathered} \frac{
{dy}}{
{dt}} = z \\ \frac{
{dz}}{
{dt}} = – y \\ \end{gathered} dtdy=zdtdz=−y
%有条件的微分方程
clear all
clc
syms y(t) z(t)
eqns = [diff(y,t) == z, diff(z,t) == -y]
S = dsolve(eqns)
dsolve返回一个包含解的结构
%有条件的微分方程案例1
clear all
clc
syms y(t) z(t)
eqns = [diff(y,t) == z, diff(z,t) == -y]
S = dsolve(eqns)
ySol(t) = S.y
zSol(t) = S.z
C 1 cos ( t ) + C 2 sin ( t ) C_{1}\,\cos\left(t\right)+C_{2}\,\sin\left(t\right) C1cos(t)+C2sin(t)
C 2 cos ( t ) − C 1 sin ( t ) C_{2}\,\cos\left(t\right)-C_{1}\,\sin\left(t\right) C2cos(t)−C1sin(t)
( ∂ ∂ t y ( t ) = 4 z ( t ) ∂ ∂ t z ( t ) = − 3 y ( t ) ) \left( {\frac{\partial }{
{\partial t}}\operatorname{y} \left( t \right) = 4\operatorname{z} \left( t \right)\,\frac{\partial }{
{\partial t}}\operatorname{z} \left( t \right) = -3\operatorname{y} \left( t \right)} \right) (∂t∂y(t)=4z(t)∂t∂z(t)=−3y(t))
%有条件的微分方程案例2
clear all
clc
syms y(t) z(t)
eqns = [diff(y,t) == 4*z, diff(z,t) == -3*y]
S = dsolve(eqns)
ySol(t) = S.y
zSol(t) = S.z
其实也可以直接用
%输出分配
[ySol(t),zSol(t)] = dsolve(eqns)
微分方程显示隐式解
∂ ∂ x y ( x ) = e − y ( x ) + y ( x ) \frac{\partial }{
{\partial x}}\operatorname{y} \left( x \right) = {e^{ – \operatorname{y} \left( x \right)}} + \operatorname{y} \left( x \right) ∂x∂y(x)=e−y(x)+y(x)
%这里我们设置"Inplicit"为True
sol = dsolve(eqn,'Implicit',true)
%求微分方程的显式和隐式解
clear all
clc
syms y(x)
eqn = diff(y) == y+exp(-y)
sol = dsolve(eqn)
sol = dsolve(eqn,'Implicit',true)
未找到显式解决方案时查找隐式解决方案
∂ ∂ t y ( x ) = y ( x ) + a y ( x ) \frac{\partial }{
{\partial t}}\operatorname{y} \left( x \right) = \operatorname{y} \left( x \right) + \frac{a}{
{\sqrt {\operatorname{y} \left( x \right)} }} ∂t∂y(x)=y(x)+y(x)a
同时我们已知 y ( a ) = 1 y(a)=1 y(a)=1
%当未找到显式解决方案时查找隐式解决方案
clear all
clc
syms a y(t)
eqn = diff(y,t) == a/sqrt(y) + y
cond = y(a) == 1;
ySimplified = dsolve(eqn, cond)
若要返回包含参数a的所有可能值的解决方案,请通过将”lgnoreAnalyticConstraints”设置为false来关闭简化。
yNotSimplified = dsolve(eqn,cond,'IgnoreAnalyticConstraints',false)
%当未找到显式解决方案时查找隐式解决方案
clear all
clc
syms a y(x)
eqn = diff(y,x) == a/sqrt(y) + y
cond = y(a) == 1;
ySimplified = dsolve(eqn, cond)
yNotSimplified = dsolve(eqn,cond,'IgnoreAnalyticConstraints',false)
求微分方程级数解
dsolve返回包含未计算积分项的解
( x + 1 ) ∂ ∂ x y ( x ) − y ( x ) + ∂ 2 ∂ x 2 y ( x ) = 0 \left( {x + 1} \right)\frac{\partial }{
{\partial x}}\operatorname{y} \left( x \right) – \operatorname{y} \left( x \right) + \frac{
{
{\partial ^2}}}{
{\partial {x^2}}}\operatorname{y} \left( x \right) = 0 (x+1)∂x∂y(x)−y(x)+∂x2∂2y(x)=0
%级数1
clear all
clc
syms y(x)
eqn = (x^2-1)^2*diff(y,2) + (x+1)*diff(y) - y == 0
S = dsolve(eqn)
但是若要返回x=-1附近微分方程的级数解,请将“ExpansionPoint”设置为 -1。dsolve 根据Puiseux级数展开返回两1个线性无关的解。
通过将‘ExpansionPoint’设置为 I n f Inf Inf,找到围绕扩展点 ∞ \infty ∞的其他级数解
为具有不同单边限制的函数指定初始条件(特解)
∂ ∂ x y ( x ) = e − 1 x x 2 \frac{\partial }{
{\partial x}}\operatorname{y} \left( x \right) = \frac{
{
{e^{ – \frac{1}{x}}}}}{
{
{x^2}}} ∂x∂y(x)=x2e−x1
%添加条件
clear all
clc
syms y(x)
eqn = diff(y) == exp(-1/x)/x^2
ySol(x) = dsolve(eqn)
设初始条件 y ( 0 ) = 2 y(0)=2 y(0)=2,则须添加下列代码:
cond = y(0) == 2;
S = dsolve(eqn,cond)
练习题
可以直接敲代码试试
d y d t + 4 y ( t ) = e − t , y ( 0 ) = 1 \frac{
{dy}}{
{dt}} + 4\operatorname{y} \left( t \right) = {e^{ – t}},y(0)=1 dtdy+4y(t)=e−t,y(0)=1
2 x 2 d 2 y d x 2 + 3 x d y d x − y = 0 2{x^2}\frac{
{
{d^2}y}}{
{d{x^2}}} + 3x\frac{
{dy}}{
{dx}} – y = 0 2x2dx2d2y+3xdxdy−y=0
The Airy equation.
d 2 y d x 2 = x y ( x ) \frac{
{
{d^2}y}}{
{d{x^2}}} = x\operatorname{y} \left( x \right) dx2d2y=xy(x)
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/223087.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...