狄利克雷近似定理_莫比乌斯反演例题

狄利克雷近似定理_莫比乌斯反演例题首先定义几个概念:1,卷积:设是两个数论函数(也就是说,以自然数集为定义域的复数值函数),则卷积运算定义为可以证明,卷积运算满足:1)交换律:由定义显然。2)结合律:考察两边作用在上,左边是右边是故两边相等。3)存在单位元使得我们需要故不难猜到应该定义为事实上,直接验证可得以上说明数论函数在卷积意义下构成一个交换群。

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全家桶1年46,售后保障稳定

首先定义几个概念:

1,卷积:
f,g是两个数论函数(也就是说,以自然数集为定义域的复数值函数),则卷积运算f\ast g定义为
(f\ast g)(n) = \sum_{ij=n}{f(i)g(j)}
可以证明,卷积运算满足:
1)交换律:f\ast g=g\ast f
由定义显然。

2)结合律:(f\ast g)\ast h=f\ast(g\ast h)
考察两边作用在n上,左边是
\begin{align} ((f\ast g)\ast h)(n) &= \sum_{lk=n}(f\ast g)(l)h(k) \\ &= \sum_{lk=n}\left(\sum_{ij=l}f(i)g(j)\right)h(k)\\ &= \sum_{ijk=n} f(i)g(j)h(k) \end{align}
右边是
\begin{align} (f\ast (g\ast h))(n) &= \sum_{il=n}f(i)(g\ast h)(l) \\ &= \sum_{il=n}f(i)\left(\sum_{jk=l}g(j)h(k)\right)\\ &= \sum_{ijk=n} f(i)g(j)h(k) \end{align}
故两边相等。

3)存在单位元\iota 使得\iota \ast f=f
我们需要
(\iota\ast f)(n)=\sum_{ij=n}\iota(i)f(j)=f(n)
故不难猜到\iota 应该定义为\iota(n)= \begin{cases} 1&n=1\\ 0&n\neq1 \end{cases}
事实上,直接验证可得
(\iota\ast f)(n)=\sum_{ij=n}\delta_{i,1}f(j)=f(n)

以上说明数论函数在卷积意义下构成一个交换群。

2,乘法单位元u
上面的\iota 是数论函数在卷积意义下的单位元,而普通乘法(fg)(n):=f(n)g(n)意义下的单位元显然是把所有自然数都映到1的函数,记作u

3,莫比乌斯函数\mu u在卷积意义下的逆元,称为莫比乌斯函数。也就是说\mu 是满足
u\ast\mu=\iota
的唯一的数论函数。
把这个表达式写开就是
\sum_{d\mid n}\mu(d)=\iota(n)…………(*)

通常,莫比乌斯函数\mu定义为
\mu(1)=1
\mu(n)=(-1)^k,如果n能写成k个不同素数之积;
\mu(n)=0,其他情况。

按照这种定义不难证明(*)式。
对于n=1,(*)式成立;
对于n\neq1,用算术基本定理把n写成
n=p_1^{a_1}p_2^{a_2}\cdots p_k^{a_k}
于是
\begin{align} \sum_{d\mid n}\mu(d) =& \mu(1)+\mu(p_1)+\mu(p_2)+\cdots+\mu(p_k)+\mu(p_1p_2)+\cdots+\mu(p_1p_2\cdots p_k) \\ =& \binom{k}{0}+\binom{k}{1}(-1)+\binom{k}{2}(-1)^2+\cdots+\binom{k}{k}(-1)^k \\ =&(1-1)^k=0 \end{align}

现在来看看莫比乌斯反演说的是什么呢?
f(n)=\sum_{d\mid n}g(d)
当且仅当
g(n)=\sum_{d\mid n}\mu\left(\frac{n}{d}\right)f(d)
换而言之,
f = g\ast u \Leftrightarrow g = f\ast\mu

证明:

\begin{align} f=g\ast u \Rightarrow& f\ast \mu=(g\ast u)\ast \mu \\ \Rightarrow& f\ast\mu=g\ast(u\ast\mu) \\ \Rightarrow& f\ast\mu=g\ast\iota \\ \Rightarrow& f\ast\mu=g \end{align}

反之

\begin{align} g=f\ast\mu \Rightarrow& g\ast u=(f\ast\mu)\ast u \\ \Rightarrow& g\ast u=f\ast(\mu\ast u) \\ \Rightarrow& g\ast u=f\ast\iota \\ \Rightarrow& g\ast u=f \end{align}

作者:Syu Gau

链接:https://www.zhihu.com/question/23764267/answer/26007647

来源:知乎

著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/219524.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号