大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。
Jetbrains全家桶1年46,售后保障稳定
KaTeX 是一个快速,易于使用的JavaScript库,用于在Web上进行TeX数学渲染。
KaTeX兼容所有主流浏览器,包括Chrome,Safari,Firefox,Opera,Edge和IE 9-11。
KaTeX支持很多(但不是全部)LaTeX语法和许多LaTeX软件包。
希腊字母
A \Alpha A \Alpha | α \alpha α \alpha | T \Tau T \Tau | τ \tau τ \tau |
---|---|---|---|
B \Beta B \Beta | β \beta β \beta | Υ \Upsilon Υ \Upsilon | υ \upsilon υ \upsilon |
Γ \Gamma Γ \Gamma | γ \gamma γ \gamma | Φ \Phi Φ \Phi | ϕ \phi ϕ \phi |
Δ \Delta Δ \Delta | δ \delta δ \delta | X \Chi X \Chi | χ \chi χ \chi |
E \Epsilon E \Epsilon | ϵ \epsilon ϵ \epsilon | Ψ \Psi Ψ \Psi | ψ \psi ψ \psi |
Z \Zeta Z \Zeta | ζ \zeta ζ \zeta | Ω \Omega Ω \Omega | ω \omega ω \omega |
H \Eta H \Eta | η \eta η \eta | Π \varPi Π \varPi | ϖ \varpi ϖ \varpi |
Θ \Theta Θ \Theta | θ \theta θ \theta | Σ \varSigma Σ \varSigma | ς \varsigma ς \varsigma |
I \Iota I \Iota | ι \iota ι \iota | Θ \varTheta Θ \varTheta | ϑ \vartheta ϑ \vartheta |
K \Kappa K \Kappa | κ \kappa κ \kappa | Φ \varPhi Φ \varPhi | φ \varphi φ \varphi |
Λ \Lambda Λ \Lambda | λ \lambda λ \lambda | Γ \varGamma Γ \varGamma | ε \varepsilon ε \varepsilon |
M \Mu M \Mu | μ \mu μ \mu | Δ \varDelta Δ \varDelta | ϰ \varkappa ϰ \varkappa |
N \Nu N \Nu | ν \nu ν \nu | Λ \varLambda Λ \varLambda | ϑ \thetasym ϑ \thetasym |
Ξ \Xi Ξ \Xi | ξ \xi ξ \xi | Ξ \varXi Ξ \varXi | ϱ \varrho ϱ \varrho |
O \Omicron O \Omicron | ο \omicron ο \omicron | Υ \varUpsilon Υ \varUpsilon | ϝ \digamma ϝ \digamma |
Π \Pi Π \Pi | π \pi π \pi | Ψ \varPsi Ψ \varPsi | |
P \Rho P \Rho | ρ \rho ρ \rho | Ω \varOmega Ω \varOmega | |
Σ \Sigma Σ \Sigma | σ \sigma σ \sigma | ℧ \mho ℧ \mho | |
ı \imath ı \imath | ∇ \nabla ∇ \nabla | ℑ \Im ℑ \Im | R \Reals R \Reals |
ȷ \jmath ȷ \jmath | ∂ \partial ∂ \partial | ℑ \image ℑ \image | ℘ \wp ℘ \wp |
ℵ \aleph ℵ \aleph | ⅁ \Game ⅁ \Game | k \Bbbk k \Bbbk | ℘ \weierp ℘ \weierp |
ℵ \alef ℵ \alef | Ⅎ \Finv Ⅎ \Finv | N \N N \N | Z \Z Z \Z |
ℵ \alefsym ℵ \alefsym | C \cnums C \cnums | N \natnums N \natnums | a ˚ \text{\aa} a˚ \text{\aa} |
ℶ \beth ℶ \beth | C \Complex C \Complex | R \R R \R | A ˚ \text{\AA} A˚ \text{\AA} |
ℷ \gimel ℷ \gimel | ℓ \ell ℓ \ell | ℜ \Re ℜ \Re | æ \text{\ae} æ \text{\ae} |
ℸ \daleth ℸ \daleth | ℏ \hbar ℏ \hbar | ℜ \real ℜ \real | Æ \text{\AE} Æ \text{\AE} |
ð \eth ð \eth | ℏ \hslash ℏ \hslash | R \reals R \reals | œ \text{\oe} œ \text{\oe} |
数学结构
符号 | 定义 | Latex |
---|---|---|
a ˉ ; a + b i ‾ \bar{a};\overline{a+bi} aˉ;a+bi | 共轭 | \bar{a}; \overline{a+bi} |
A B ‾ \underline{AB} AB | \underline{AB} | |
a ⃗ , A B → ; a c ⇀ \vec{a},\overrightarrow{AB};\overrightharpoon{ac} a,AB;ac | 向量 | \vec{a},\overrightarrow{AB};\overrightharpoon{ac} |
A B → \underrightarrow{AB} AB | \underrightarrow{AB} | |
A B ← ; a c ↼ ; A B ← \overleftarrow{AB};\overleftharpoon{ac};\underleftarrow{AB} AB;ac;AB | \overleftarrow{AB};;\overleftharpoon{ac};\underleftarrow{AB} | |
T ↔ \overleftrightarrow{T} T |
张量 | \overleftrightarrow{T} |
T ⇉ \overset{\rightrightarrows}{T} T⇉ | 张量并矢 | \overset{\rightrightarrows}{T} |
A B ↔ \underleftrightarrow{AB} AB |
\underleftrightarrow{AB} | |
A B ⇒ \Overrightarrow{AB} AB | \Overrightarrow{AB} | |
b a \dfrac{b}{a} ab | 分数 | \frac{b}{a}; \dfrac{b}{a} |
a 1 + 1 b \cfrac{a}{1 + \cfrac{1}{b}} 1+b1a | 复合分式 | \cfrac{a}{1 + \cfrac{1}{b}} |
x ; x n \sqrt{x}; \sqrt[n]{x} x;nx | 开方 | \sqrt{x}; \sqrt[n]{x} |
a n a^n an | 指数 | a^n |
a n a_n an | 下标 | a_n |
= ! \stackrel{!}{=} =! | 堆叠 | \stackrel{!}{=} |
= ! \overset{!}{=} =! | 上方 | \overset{!}{=} |
= ! \underset{!}{=} != | 下方 | \underset{!}{=} |
a b a \atop b ba | a \atop b | |
a b c a\raisebox{0.25em}{b}c abc | a\raisebox{0.25em}{b}c | |
f ∘ g f \circ g f∘g | 复合函数 | f \circ g |
Math mode accents
二元运算 | 定义 | Latex |
---|---|---|
θ ^ \hat{\theta} θ^ | 坐标基 | \hat{\theta};^{\theta} |
a c ^ \widehat{ac} ac |
夹角 | \widehat{ac} |
a ˘ \breve{a} a˘ | \breve{a} | |
a ˇ ; a c ˇ \check{a};\widecheck{ac} aˇ;ac |
\check{a};\widecheck{ac} | |
a ~ ; a c ~ ; A B ~ \tilde{a};\widetilde{ac};\utilde{AB} a~;ac ; AB |
波浪 | \tilde{a};\widetilde{ac};\utilde{AB} |
a ˊ \acute{a} aˊ | \acute{a} | |
a ˋ \grave{a} aˋ | \grave{a} | |
A B ⏠ ; A B ⏡ \overgroup{AB};\undergroup{AB} AB ; AB |
\overgroup{AB};\undergroup{AB} |
基本运算
基本运算 | 定义 | Latex |
---|---|---|
= = = | is equal to | = |
≈ \approx ≈ | is approximately equal to | \approx |
+ + + | plus | + |
− – − | minus | – |
± ; ∓ \pm; \mp ±;∓ | plus-minus; minus-plus | \pm; \mp |
× \times × | multiplied by;cross product | \times |
⋅ \cdot ⋅ | dot product | \cdot; \centerdot |
∗ * ∗ | *;\ast | |
÷ ; / \div; / ÷;/ | divided by | \div; / |
< < < | is less than | <;\lt |
> > > | is greater than | >;\gt |
≪ ; ⋘ \ll;\lll ≪;⋘ | 远小于 | \ll\lll |
≫ ; ⋙ \gg;\ggg ≫;⋙ | 远大于 | \gg;\ggg |
⩾ ; ≥ \geqslant;\ge ⩾;≥ | 大于等于 | \geqslant\ge |
⩽ ; ≤ \leqslant;\le ⩽;≤ | 小于等于 | \leqslant;\le |
∝ \propto ∝ | 正比于 | \propto |
≜ \triangleq ≜ | 定义 | \triangleq |
≠ ; ∉ \not=;\not\in =;∈ | 前方加\not否定 | \not=;\not\in |
∑ k = 0 n ∁ n k \displaystyle\sum_{k=0}^n \complement^k_n k=0∑n∁nk | 求和 | \displaystyle\sum_{k=0}^n \complement^k_n |
∏ \prod ∏ | 求积 | \prod |
⨿ \amalg ⨿ | 合并 | \amalg |
分隔符
符号 | 定义 | Latex | 示例 |
---|---|---|---|
∣ a ∣ \mid a \mid ∣a∣ | 绝对值 | \vert; \mid; | ;\vert; \rvert |
|
∥ a ∥ \|a\| ∥a∥ | 范数,模 | \Vert; \| ; \lVert\ ;rVert |
|
⌈ a ⌉ \lceil a\rceil ⌈a⌉ | ceiling | \lceil a\rceil | |
⌊ a ⌋ \lfloor a\rfloor ⌊a⌋ | floor | \lfloor a\rfloor | ⌊2.1⌋ = 2 |
⌊ a ⌉ \lfloor a\rceil ⌊a⌉ | 最接近的整数 | \lfloor a\rceil | ⌊2.6⌉ = 3 |
⎰ ⎱ \lmoustache\rmoustache ⎰⎱ | 胡须 | \lmoustache\rmoustache | |
┌ ┐ \ulcorner\urcorner ┌┐ | \ulcorner\urcorner | ||
└ ┘ \llcorner\lrcorner └┘ | \llcorner\lrcorner | ||
↑ ; ↓ ; ↕ \uparrow;\downarrow;\updownarrow ↑;↓;↕ | \uparrow;\downarrow;\updownarrow | ||
⇑ ; ⇓ ; ⇕ \Uparrow;\Downarrow;\Updownarrow ⇑;⇓;⇕ | \uparrow;\downarrow;\updownarrow |
分隔符尺寸
( A B ) \left(\LARGE{AB}\right) (AB) \left(\LARGE{AB}\right)
( ( ( ( ( ( \big( \Big( \bigg( \Bigg( ((((( ( \big( \Big( \bigg( \Bigg(
注释
符号 | 定义 | Latex |
---|---|---|
§ \text{\sect} § | 分节 | \text{\sect} |
⋆ \star ⋆ | 星号 | \star |
5 \cancel{5} 5 |
划线 | \cancel{5} |
5 \bcancel{5} 5 |
划线 | \bcancel{5} |
a b c \xcancel{abc} abc |
划线 | \xcancel{5} |
5 \sout{5} 5 | 划线 | sout{5} |
π = c d \boxed{\pi=\frac c d} π=dc | 方框 | \boxed{\pi=\frac c d} |
a + b + c ⏞ note \overbrace{a+b+c}^{\text{note}} a+b+c note |
上备注 | \overbrace{a+b+c}^{\text{note}} |
a + b + c ⏟ note \underbrace{a+b+c}_{\text{note}} note a+b+c |
下备注 | \underbrace{a+b+c}_{\text{note}} |
\tag{hi} x+y^{2x}
x + y 2 x (hi) x+y^{2x} \tag{hi} x+y2x(hi)
\tag*{hi} x+y^{2x}
x + y 2 x hi x+y^{2x}\tag*{hi} x+y2xhi
函数
arcsin \arcsin arcsin \arcsin |
cotg \cotg cotg \cotg |
ln \ln ln \ln |
det \det det \det |
---|---|---|---|
arccos \arccos arccos \arccos |
coth \coth coth \coth |
log \log log \log |
gcd \gcd gcd \gcd |
arctan \arctan arctan \arctan |
csc \csc csc \csc |
sec \sec sec \sec |
inf \inf inf \inf |
arctg \arctg arctg \arctg |
ctg \ctg ctg \ctg |
sin \sin sin \sin |
lim \lim lim \lim |
arcctg \arcctg arcctg \arcctg |
cth \cth cth \cth |
sinh \sinh sinh \sinh |
lim inf \liminf liminf \liminf |
arg \arg arg \arg |
deg \deg deg \deg |
sh \sh sh \sh |
lim sup \limsup limsup \limsup |
ch \ch ch \ch |
dim \dim dim \dim |
tan \tan tan \tan |
max \max max \max |
cos \cos cos \cos |
exp \exp exp \exp |
tanh \tanh tanh \tanh |
min \min min \min |
cosec \cosec cosec \cosec |
hom \hom hom \hom |
tg \tg tg \tg |
Pr \Pr Pr \Pr |
cosh \cosh cosh \cosh |
ker \ker ker \ker |
th \th th \th |
sup \sup sup \sup |
cot \cot cot \cot |
lg \lg lg \lg |
f \operatorname{f} f \operatorname{f} |
arg max \arg\max argmax \arg\max |
arg min \arg\min argmin \arg\min |
逻辑理论
符号 | 定义 | Latex | 示例 |
---|---|---|---|
∵ \because ∵ | 因为 | \because | |
∴ \therefore ∴ | 所以 | \therefore | |
¬ ; ∼ \lnot; \sim ¬;∼ | 逻辑非(negation) | \neg; \lnot; \sim | ¬ ( ¬ A ) ⟺ A \lnot(\lnot A)\iff A ¬(¬A)⟺A |
∧ \land ∧ | 逻辑与 | \land | n < 4 ∧ n > 2 ⇔ n = 3 when n is a natural number. |
∨ \lor ∨ | 逻辑或 | \lor | n ≥ 4 ∨ n ≤ 2 ⇔ n ≠ 3 when n is a natural number. |
⊕ ; ⊻ \oplus; \veebar ⊕;⊻ | 异或 | \oplus; \veebar | a ⊕ b = ( ¬ a ∧ b ) ∨ ( a ∧ ¬ b ) a\oplus b=(\lnot a\land b)\lor(a\land \lnot b) a⊕b=(¬a∧b)∨(a∧¬b) |
⟺ ; ↔ \iff; \leftrightarrow ⟺;↔ | 双条件,等价关系,当且仅当(if and only if) | \iff; \leftrightarrow | |
⇒ ; → \Rarr; \rarr ⇒;→ | 条件运算,if … then | \Rarr; \rarr ;\to | x = 6 ⇒ x 2 = 36 x=6\Rightarrow x^2=36 x=6⇒x2=36 |
⇐ ; ← \Larr; \larr ⇐;← | 左箭头 | \Larr; \larr; \gets | |
: = ; : ⇔ :=; :\Leftrightarrow :=;:⇔ | 定义 | := | |
⟹ ; ⟸ \implies; \impliedby ⟹;⟸ | \implies; \impliedby | ||
∀ \forall ∀ | 任意 | \forall | ∀ n ∈ ℕ, n2 ≥ n |
∃ \exists ∃ | 存在 | \exists | ∃ n ∈ ℕ: n is even |
∃ ! \exists! ∃! | 唯一存在 | \exists! | ∃! n ∈ ℕ: n + 5 = 2n. |
⊨ \vDash ⊨ | 满足符 | \vDash | A ⊨ B A\vDash B A⊨B |
⊢ \vdash ⊢ | 推断出 | \vdash | A → B ⊢ ¬B → ¬A |
□ \square □ | 拟态词必然 | \square | |
◊ \Diamond ◊ | 拟态词可能 | \Diamond | |
R ∘ S R \circ S R∘S | 复合关系 | R \circ S |
集合和概率
符号 | 定义 | Latex |
---|---|---|
{ x ∣ P ( x ) } \{x\vert P(x)\} { x∣P(x)} |
集合 | {x\mid P(x)} |
U ˚ \mathring{U} U˚ | 邻域 | \mathring{U} |
⊎ \uplus ⊎ | 多重集 | \uplus |
⊂ \subset ⊂ | 真子集 | \subset |
⊆ \subseteq ⊆ | 子集 | \subseteq |
⊃ \supset ⊃ | 真父集 | \supset |
⊇ \supseteq ⊇ | 父集 | \supseteq |
∈ \in ∈ | \in | |
∋ \ni ∋ | \ni | |
∩ \cap ∩ | 交集 | \cap |
∪ \cup ∪ | 并集 | \cup |
∖ \setminus ∖ | 差集 | \setminus |
c a r d ( A ) \mathrm{card}(A) card(A) | 元素个数 | \mathrm{card}(A) |
∅ ; ∅ \emptyset; \varnothing ∅;∅ | 空集 | \emptyset; \varnothing |
N \N N | 自然数 | \N |
Z \Z Z | 整数 | \Z |
R \R R | 实数 | \R;\Reals |
ℑ \Im ℑ | 虚数 | \Im; \Image |
C \Complex C | 复数 | \Complex |
n ! n! n! | 阶乘 | n! |
( n k ) \binom{n}{k} (kn), [ n k ] {n\brack k} [kn] | 二项式系数 | \binom{n}{k}; \dbinom{n}{k}; {n \choose k}; n\brack k |
A m n A^n_m Amn | 排列(Arrangement) | A^n_m |
∁ m n \complement^n_m ∁mn | 组合 | \complement^n_m |
X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) X∼N(μ,σ2) | 服从分布 | \sim |
⟨φ|ψ⟩ | 左矢量,右矢量 | \langle\rangle |
{ n k } {n\brace k} { kn} |
{n\brace k} | |
[ n k ] {n\brack k} [kn] | {n\brack k} |
几何
符号 | 定义 | Latex |
---|---|---|
∽ \backsim ∽ | 相似三角形 | \backsim |
⋍ \backsimeq ⋍ | \backsimeq | |
= ∽ \overset{\backsim}{=} =∽ | 全等三角形 | \overset{\backsim}{=} |
∥ \parallel ∥ | 平行 | \parallel |
∦ \nparallel ∦ | 不平行 | \nparallel |
⊥ \bot ⊥ | 垂直 | \bot |
A B ‾ \overline{AB} AB | 直线 | \overline{AB} |
A B undefined \overlinesegment{AB} AB |
线段 | \overlinesegment{AB} |
A B undefined \underlinesegment{AB} AB |
\underlinesegment{AB} | |
A B ⌢ \overset{\frown}{AB} AB⌢ | 弧 | \overset{\frown}{AB} |
⊙ \odot ⊙ | 圆 | \odot |
◯ \bigcirc ◯ | \bigcirc | |
⊡ \boxdot ⊡ | \boxdot | |
□ \square □ | 矩形 | \square |
R t △ \mathrm{Rt}\triangle Rt△ | 直角三角形 | \mathrm{Rt}\triangle |
◊ \Diamond ◊ | 菱形 | \Diamond |
∠ \angle ∠ | 角 | \angle |
∡ \measuredangle ∡ | \measuredangle | |
90 ° 90\degree 90° | 角度 | 90\degree |
微积分
符号 | 定义 | Latex | 示例 |
---|---|---|---|
← \gets ← | \gets | ||
→ \to → | 趋向于 | \to | f : X → Y f:X\to Y f:X→Y |
∞ \infty ∞ | 无穷大 | \infty | |
lim \lim lim | 极限 | \lim\limits_{x\to \infty} f(x)=1 | lim x → ∞ f ( x ) = 1 \lim\limits_{x\to \infty} f(x)=1 x→∞limf(x)=1 |
x ˙ \dot{x} x˙ | 导数 | \dot{x} | |
x ¨ \ddot{x} x¨ | 二阶导 | \ddot{x} | |
x ′ x’ x′ | 导数 | x’; x^\prime | |
x ′ ′ x” x′′ | 二阶导 | x’’ | |
x ( n ) x^{(n)} x(n) | n阶导 | x^{(n)} | |
∂ \partial ∂ | 偏导数 | \partial | |
d x \mathrm{d}x dx | 微分 | \mathrm{d}x | |
∫ \int ∫ | 积分 | \int | ∫ x 2 d x = x 3 3 + C ∫ a b x 2 d x = b 3 − a 3 3 \int x^2\mathrm{d}x =\dfrac{x^3}{3}+C \\ \int_a^b x^2\mathrm{d}x =\dfrac{b^3-a^3}{3} ∫x2dx=3x3+C∫abx2dx=3b3−a3 |
∬ \iint ∬ | 积分 | \iint | |
∭ \iiint ∭ | 积分 | \iiint | |
∮ \oint ∮ | 曲线积分 | \oint | ∮ C 1 z d z = 2 π i \oint_C \frac{1}{z}\mathrm{d}z=2\pi i ∮Cz1dz=2πi |
∯ \oiint ∬ | 积分 | \oiint | |
∰ \oiiint ∭ | 积分 | \oiiint | |
∇ \nabla ∇ | 微分算子 | \nabla | ∇ ⋅ v ⃗ = ∂ v ∂ x + ∂ v ∂ y + ∂ v ∂ z \nabla\cdot\vec{v}=\dfrac{\partial v}{\partial x}+\dfrac{\partial v}{\partial y}+\dfrac{\partial v}{\partial z} ∇⋅v=∂x∂v+∂y∂v+∂z∂v |
Δ \Delta Δ | 拉普拉斯算子 | \Delta | Δ f = ∇ 2 f = ∇ ⋅ ∇ f \Delta f=\nabla ^{2}f=\nabla \cdot \nabla f Δf=∇2f=∇⋅∇f |
□ \Box □ | 非欧几里得 拉普拉斯算子 |
\Box | □ = 1 c 2 ∂ 2 ∂ t 2 − ∂ 2 ∂ x 2 − ∂ 2 ∂ y 2 − ∂ 2 ∂ z 2 \Box=\dfrac{1}{c^2}\dfrac{\partial^2}{\partial t^2}-\dfrac{\partial^2}{\partial x^2}-\dfrac{\partial^2}{\partial y^2}-\dfrac{\partial^2}{\partial z^2} □=c21∂t2∂2−∂x2∂2−∂y2∂2−∂z2∂2 |
\iiint\limits_{Ω}(\dfrac{∂P}{∂x}+\dfrac{∂Q}{∂y}+\dfrac{∂R}{∂z})\mathrm{d}V=
\oiint\limits_{Σ}P\mathrm{d}y\mathrm{d}z+Q\mathrm{d}x\mathrm{d}z+R\mathrm{d}x\mathrm{d}y
∭ Ω ( ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z ) d V = ∯ Σ P d y d z + Q d x d z + R d x d y \iiint\limits_{Ω}(\dfrac{∂P}{∂x}+\dfrac{∂Q}{∂y}+\dfrac{∂R}{∂z})\mathrm{d}V=\oiint\limits_{Σ}P\mathrm{d}y\mathrm{d}z+Q\mathrm{d}x\mathrm{d}z+R\mathrm{d}x\mathrm{d}y Ω∭(∂x∂P+∂y∂Q+∂z∂R)dV=Σ∬Pdydz+Qdxdz+Rdxdy
线性代数
表示 | 定义 | Latex |
---|---|---|
f ( x ) = { a if b c if d f(x)=\begin{cases} a &\text{if } b \\ c &\text{if } d \end{cases} f(x)={ acif bif d |
定义方程 | f(x)=\begin{cases} a &\text{if } b \\ c &\text{if } d \end{cases} |
10 x + 3 y = 2 3 x + 13 y = 4 \begin{alignedat}{2} 10&x+ &3&y = 2 \\ 3&x+&13&y = 4 \end{alignedat} 103x+x+313y=2y=4 | 方程组 | \begin{alignedat}{2 } 10&x+ &3&y = 2 \\ 3&x+&13&y = 4 \end{alignedat} |
f ( x ) = ( m + n ) 2 = m 2 + 2 m + n 2 \begin{aligned} f(x) &=(m+n)^2 \\ & =m^2+2m+n^2 \end{aligned} f(x)=(m+n)2=m2+2m+n2 | 多行等式 | \begin{aligned} f(x) &=(m+n)^2 \\ & =m^2+2m+n^2 \end{aligned} |
a b c d \begin{matrix} a & b \\ c & d\end{matrix} acbd | 数组 | \begin{matrix} a & b \\ c & d \end{matrix} |
a b c d \begin{array}{cc} a & b \\ c & d\end{array} acbd | 数组 | \begin{array}{cc} a & b \\ c & d \end{array} |
( a b c d ) \begin{pmatrix} a & b \\ c & d\end{pmatrix} (acbd) | 矩阵 | \begin{pmatrix} a & b \\ c & d \end{pmatrix} |
[ a b c d ] \begin{bmatrix} a & b \\ c & d\end{bmatrix} [acbd] | 矩阵 | \begin{bmatrix } a & b \\ c & d \end{bmatrix} |
∣ a b c d ∣ \begin{vmatrix} a & b \\ c & d\end{vmatrix} ∣∣∣∣acbd∣∣∣∣ | 行列式 | \begin{vmatrix} a & b \\ c & d \end{vmatrix} |
∥ a b c d ∥ \begin{Vmatrix} a & b \\ c & d\end{Vmatrix} ∥∥∥∥acbd∥∥∥∥ | 范式,模 | \begin{Vmatrix} a & b \\ c & d \end{Vmatrix} |
{ a b c d } \begin{Bmatrix}a & b \\ c & d\end{Bmatrix} { acbd} |
\begin{Bmatrix} a & b \\ c & d \end{Bmatrix} |
|
a b c d e f g h i \def\arraystretch{1.5} \begin{array}{c:c:c} a & b & c \\ \hline d & e & f \\ \hdashline g & h & i\end{array} adgbehcfi | \def\arraystretch{1.5} \begin{array}{c:c:c} a & b & c \\ \hline d & e & f \\ \hdashline g & h & i \end{array} |
|
→ u n d e r o v e r \xrightarrow[under]{over} overunder | 初等变换 | \xrightarrow[under]{over} |
A ≅ B A\cong B A≅B | 矩阵等价 | A\cong B |
A ∼ B A\sim B A∼B | 矩阵相似 | A\sim B |
A ≃ B A\simeq B A≃B | 矩阵合同 | A\simeq B |
A ˉ \bar{A} Aˉ | \bar{A} | |
A ∗ A^* A∗ | 伴随矩阵 | A^* |
det A ; ∣ A ∣ \det A;\vert A \vert detA;∣A∣ | 矩阵的行列式 | \det A |
d i a g ( a 1 , a 2 , a 3 ) \mathrm{diag}(a_1,a_2,a_3) diag(a1,a2,a3) | 对角阵 | \mathrm{diag}(a_1,a_2,a_3) |
A ⊗ B A\otimes B A⊗B | 克罗内克积 | \otimes |
⋯ \cdots ⋯ | 横点 | \cdots |
⋮ \vdots ⋮ | 竖点 | \vdots |
⋱ \ddots ⋱ | 对角点 | \ddots |
( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n ) ( 1 0 0 0 0 1 0 0 0 0 1 5 ) \begin{pmatrix} a_{11}&a_{12}&\cdots&a_{1n} \\ a_{21}&a_{22}&\cdots&a_{2n} \\ \vdots&\vdots&\ddots&\vdots \\ a_{m1}&a_{m2}&\cdots&a_{mn} \\ \end{pmatrix} \quad \left( \def\arraystretch{1.2} \begin{array}{cc:c} 1&0 & 0 & 0 \\ 0&1 & 0 &0 \\ \hdashline 0&0 & 1 & 5 \end{array} \right) ⎝⎜⎜⎜⎛a11a21⋮am1a12a22⋮am2⋯⋯⋱⋯a1na2n⋮amn⎠⎟⎟⎟⎞⎝⎜⎛100010001005⎠⎟⎞
\begin{pmatrix}
a_{11}&a_{12}&\cdots&a_{1n} \\
a_{21}&a_{22}&\cdots&a_{2n} \\
\vdots&\vdots&\ddots&\vdots \\
a_{m1}&a_{m2}&\cdots&a_{mn} \\
\end{pmatrix}
\left(
\def\arraystretch{1.2}
\begin{array}{cc:c}
1&0 & 0 & 0 \\
0&1 & 0 &0 \\
\hdashline
0&0 & 1 & 5
\end{array}
\right)
群论
符号 | 定义 | Latex | 示例 |
---|---|---|---|
b ( m o d m ) b\pmod m b(modm) | b\pmod m | ||
x ( a ) x \pod a x(a) | x \pod a | ||
a m o d b a \bmod b amodb | a \bmod b | ||
≡ \equiv ≡ | 同余关系 | \equiv | a ≡ b ( m o d m ) a\equiv b\pmod m a≡b(modm) |
⋗ \gtrdot ⋗ | \gtrdot | ||
⋖ \lessdot ⋖ | \lessdot | ||
⊺ \intercal ⊺ | 区间 | \intercal | |
⊳ \rhd ⊳ | 双方关系对立 | \rhd | R ⊳ S = R − R ⋉ S R\rhd S=R-R\ltimes S R⊳S=R−R⋉S |
⊲ \lhd ⊲ | 正规子群 | \lhd | Z ( G ) ⊲ G Z(G) \lhd G Z(G)⊲G |
⊵ \unrhd ⊵ | \unrhd | ||
⊴ \unlhd ⊴ | \unlhd | ||
⋋ \leftthreetimes ⋋ | \leftthreetimes | ||
⋌ \rightthreetimes ⋌ | \rightthreetimes | ||
⋊ \rtimes ⋊ | \rtimes | ||
⋉ \ltimes ⋉ | \ltimes | ||
≺ \prec ≺ | 卡普可约 | \prec | If L1 ≺ L2 and L2 ∈ P, then L1 ∈ P |
≻ \succ ≻ | \succ | ||
∣ \mid ∣ | 分解 | \mid | Since 15 = 3 × 5, it is true that 3 | 15 and 5 | 15 |
∤ \nmid ∤ | \nmid |
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/219141.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...