信道估计LS和MMSE_盲信道估计

信道估计LS和MMSE_盲信道估计信道估计之LS在无线通信系统中,系统的性能主要受到无线信道的制约。基站和接收机之间的传播路径复杂多变,从简单的视距传输到受障碍物反射、折射、散射影响的传播。在无线传输环境中,接收信号会存在多径时延,时间选择性衰落和频域偏移,多径时延会带来符号串扰(ISI),可以通过插入保护间隔来减少;而由于时间选择性衰落和频率偏移带来的子载波干扰(ICI),除了依靠时频偏补偿来纠正外,还需要对信道进行估计,进一步进行补偿,即需要进行频域均衡和时域均衡。因此,信号估计性能的好坏直接影响接收信号的解调结果。这里对均衡技术就不

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全家桶1年46,售后保障稳定

引言

信道估计主要分为非盲信道估计盲信道估计。顾名思义,非盲信道估计需要使用基站和接收机均已知的导频序列进行信道估计,并使用不同的时频域插值技术来估计导频之间或者符号之间的子载波上的信道响应。目前主要使用的非盲信道估计包括最小二乘(LS)信道估计、最小均方误差(MMSE)信道估计、基于DFT的信道估计以及基于判决反馈信道估计等;而盲信道估计不需要已经已知的导频序列,主要包括基于最大期望的信道估计、基于子空间的信道估计技术等。本文主要介绍非盲信道估计

训练符号可以用于信道估计,通常能够提供较好的性能。然而,除了发射数据符号外,还需要发射前导或导频信号,由此产生的负荷会降低传输效率。当可以获得训练符号时,最小二乘(LS)和最小均方误差(MMSE)技术被广泛应用于信道估计。

基本假设

假设所有子载波是正交的,即没有载频间干扰(ICI),那么可以将N个子载波的训练符号表示成矩阵形式:
X = [ X [ 0 ] 0 . . . 0 0 X [ 1 ] . . . 0 . . . . . . . . . . . . 0 . . . 0 X [ N − 1 ] ] X= \begin{bmatrix} X[0] & 0 &… &0 \\ 0 & X[1] &… &0\\ … &… &… &…\\ 0 &… &0 &X[N-1] \end{bmatrix} X=X[0]0...00X[1]...............000...X[N1]
其中, X [ k ] X[k] X[k]表示第 k k k个子载波上的导频信号,满足 E { X [ k ] } = 0 E\{X[k]\}=0 E{
X[k]}=
0
, V a r { X [ k ] } = σ 2 Var\{X[k]\}=\sigma^2 Var{
X[k]}=
σ2
k = 0 , 1 , 2. … , N − 1 k=0,1,2.…,N-1 k=0,1,2.,N1。因为假设所有的子载波都是正交的,所以X是一个对角矩阵。给定第 k k k 个载波的信道增益 H [ k ] H[k] H[k],接收到的训练信号 Y [ k ] Y[k] Y[k]能够表示为
Y = [ Y [ 0 ] Y [ 1 ] . . . Y [ N − 1 ] ] = [ X [ 0 ] 0 . . . 0 0 X [ 1 ] . . . 0 . . . . . . . . . . . . 0 . . . 0 X [ N − 1 ] ] [ H [ 0 ] H [ 1 ] . . . H [ N − 1 ] ] + [ Z [ 0 ] Z [ 1 ] . . . Z [ N − 1 ] ] Y= \begin{bmatrix} Y[0] \\ Y[1] \\ …\\ Y[N-1] \\ \end{bmatrix} =\begin{bmatrix} X[0] & 0 &… &0 \\ 0 & X[1] &… &0\\ … &… &… &…\\ 0 &… &0 &X[N-1] \end{bmatrix} \begin{bmatrix} H[0] \\ H[1] \\ …\\ H[N-1] \\ \end{bmatrix} +\begin{bmatrix} Z[0] \\ Z[1] \\ …\\ Z[N-1] \\ \end{bmatrix} Y=Y[0]Y[1]...Y[N1]=X[0]0...00X[1]...............000...X[N1]H[0]H[1]...H[N1]+Z[0]Z[1]...Z[N1]

其中, H H H为信道向量, H = [ H [ 0 , H [ 1 ] , . . . , H [ N − 1 ] ] T H=[H[0,H[1],…,H[N-1]]^T H=[H[0,H[1],...,H[N1]]T Z Z Z为噪声向量 Z = [ Z [ 0 , Z [ 1 ] , . . . , Z [ N − 1 ] ] T Z=[Z[0,Z[1],…,Z[N-1]]^T Z=[Z[0,Z[1],...,Z[N1]]T,满足 E { Z [ k ] } = 0 E\{Z[k]\}=0 E{
Z[k]}=
0
, V a r { Z [ k ] } = σ z 2 Var\{Z[k]\}=\sigma_z^2 Var{
Z[k]}=
σz2
k = 0 , 1 , 2. … , N − 1 k=0,1,2.…,N-1 k=0,1,2.,N1。在下文中用 H ^ \hat{H} H^表示对信道 H H H的估计。

LS信道估计

LS信道估计是根据最小二乘准则的信道估计方法。在无线系统中,接收信号可表示为:
   Y = X H + Z Y=XH+Z Y=XH+Z
其中,X表示原始发射信号矢量(即导频信号)、H表示信道响应矢量、Z表示噪声矢量,Y表示接收信号矢量。我们的估计信道可以表示为:
Y = X H ^ Y=X\hat{H} Y=XH^

根据最小二乘准则,有如下目标函数:
       J ( H ^ ) L S = ∣ ∣ Y − X H ^ ∣ ∣ 2     = ( Y − X H ^ ) H ( Y − X H ^ )     = Y H Y − Y H X H ^ − H ^ H X H Y + H ^ H X H X H ^     \begin{aligned}   J(\hat{H})_{LS}&= || Y-X\hat{H}||\raisebox{0.5em}{2}\\   &=(Y-X\hat{H})\raisebox{0.5em}{H}(Y-X\hat{H})\\   &=Y\raisebox{0.5em}{H}Y-Y\raisebox{0.5em}{H}X\hat{H}-\hat{H}\raisebox{0.5em}{H}X\raisebox{0.5em}{H}Y+\hat{H}\raisebox{0.5em}{H}X\raisebox{0.5em}{H}X\hat{H}   \end{aligned}   J(H^)LS    =YXH^2=(YXH^)H(YXH^)=YHYYHXH^H^HXHY+H^HXHXH^  
  
  为了使得误差平方和最小,对上述目标函数求关于 H ^ \hat{H} H^的一阶偏导数:
   ∂ ( J ( H ^ ) ) ∂ ( H ^ ) = ∂ ( Y H Y − Y H X H ^ − H ^ H X H Y + H ^ H X H X H ^ ) ∂ ( H ^ ) = ∂ ( − Y H X H ^ ) ) ∂ ( H ^ ) + ∂ ( − H ^ H X H Y ) ) ∂ ( H ^ ) + ∂ ( H ^ H X H X H ^ ) ) ∂ ( H ^ ) = − Y H X − ( X H Y ) H + ( X H X H ^ ) H + H ^ H X H X = − 2 Y H X + 2 H ^ H X H X     \begin{aligned} \frac{\partial(J(\hat{H}))}{\partial(\hat{H})}&=\frac{\partial(Y\raisebox{0.5em}{H}Y-Y\raisebox{0.5em}{H}X\hat{H}-\hat{H}\raisebox{0.5em}{H}X\raisebox{0.5em}{H}Y+\hat{H}\raisebox{0.5em}{H}X\raisebox{0.5em}{H}X\hat{H})}{\partial(\hat{H})}\\ &= \frac{\partial(-Y\raisebox{0.5em}{H}X\hat{H}))}{\partial(\hat{H})}+\frac{\partial(-\hat{H}\raisebox{0.5em}{H}X\raisebox{0.5em}{H}Y))}{\partial(\hat{H})}+\frac{\partial(\hat{H}\raisebox{0.5em}{H}X\raisebox{0.5em}{H}X\hat{H}))}{\partial(\hat{H})}\\ &=-Y\raisebox{0.5em}{H}X-(X\raisebox{0.5em}{H}Y)\raisebox{0.5em}{H}+(X\raisebox{0.5em}{H}X\hat{H})\raisebox{0.5em}{H}+\hat{H}\raisebox{0.5em}{H}X\raisebox{0.5em}{H}X\\ &=-2Y\raisebox{0.5em}{H}X+2\hat{H}\raisebox{0.5em}{H}X\raisebox{0.5em}{H}X   \end{aligned} (H^)(J(H^))=(H^)(YHYYHXH^H^HXHY+H^HXHXH^)=(H^)(YHXH^))+(H^)(H^HXHY))+(H^)(H^HXHXH^))=YHX(XHY)H+(XHXH^)H+H^HXHX=2YHX+2H^HXHX  
  
   令一阶偏导数为0,则有
        2 Y H X + 2 H ^ H X H X = 0     H ^ H X H X = Y H X     X H X H ^ = X H Y     H ^ = ( X H X ) -1 X H Y     \begin{aligned}    2Y\raisebox{0.5em}{H}X+2\hat{H}\raisebox{0.5em}{H}X\raisebox{0.5em}{H}X&=0\\    \hat{H}\raisebox{0.5em}{H}X\raisebox{0.5em}{H}X&=Y\raisebox{0.5em}{H}X\\    X\raisebox{0.5em}{H}X\hat{H}&=X\raisebox{0.5em}{H}Y\\    \hat{H}&=(X\raisebox{0.5em}{H}X)\raisebox{0.5em}{-1}X\raisebox{0.5em}{H}Y    \end{aligned}   2YHX+2H^HXHX  H^HXHX  XHXH^  H^=0=YHX=XHY=(XHX)-1XHY  
   所以,当 H ^ = ( X H X ) -1 X H Y \hat{H}=(X\raisebox{0.5em}{H}X)\raisebox{0.5em}{-1}X\raisebox{0.5em}{H}Y H^=(XHX)-1XHY时,所得估计的误差平方和最小,此时得到的估计信道 H ^ \hat{H} H^是LS信道估计的解(最小范数解或最佳逼近解,广义逆矩阵知识)
   由上式可以得到目标函数的最小值,即LS信道估计的解为:
        H ^ = ( X H X ) -1 X H Y     = X -1 Y     ( 仅 当 X 是 满 秩 矩 阵 时 候 才 可 这 么 化 简 , 否 则 X H X 作 为 整 体 无 法 被 分 割 )     = X − 1 ( X H + Z )     = H + X − 1 Z     \begin{aligned}    \hat{H}&=(X\raisebox{0.5em}{H}X)\raisebox{0.5em}{-1}X\raisebox{0.5em}{H}Y\\    &=X\raisebox{0.5em}{-1}Y\\    &(仅当X是满秩矩阵时候才可这么化简,否则X^HX作为整体无法被分割)\\    &=X^{-1}(XH+Z)\\    &=H+X^{-1}Z    \end{aligned}   H^        =(XHX)-1XHY=X-1Y(XXHX)=X1(XH+Z)=H+X1Z  

LS信道估计算法,实现比较简单,计算复杂度低,但是忽略了噪声的影响。LS信道估计的均方误差(MSE)为:
M S E L S = E { ( H − H ^ ) H ( H − H ^ ) } = E { ( H − X − 1 Y ) H ( H − X − 1 Y ) } = E { ( X − 1 Z ) H ( X − 1 Z ) } = E { Z H ( X X H ) − 1 Z } = σ z 2 σ x 2 = 1 S N R \begin{aligned} MSE_{LS} &= E\{(H-\hat{H})^{H}(H-\hat{H})\}\\ &=E\{(H-X^{-1}Y)^H(H-X^{-1}Y)\}\\ &=E\{(X^{-1}Z)^H(X^{-1}Z)\}\\ &=E\{Z^H(XX^H)^{-1}Z\}\\ &= \frac{\sigma^2_z}{\sigma^2_x}\\ &=\frac{1}{SNR} \end{aligned} MSELS=E{
(HH^)H(HH^)}
=E{
(HX1Y)H(HX1Y)}
=E{
(X1Z)H(X1Z)}
=E{
ZH(XXH)1Z}
=σx2σz2=SNR1

从上式可以看出LS估计信道的均方误差MSE与信噪比SNR成反比,意味着LS信道估计增强了噪声,尤其在信道处于深度衰落时,即低SNR的情况下更是如此,信道估计的精度会受到较大影响。虽然如此,但由于实现简单,此方法仍在实际中大规模使用。

LS信道估计工程实现

在实际工程应用中,由于矩阵求逆运算量很大,遇到大规模矩阵无法求解,因此可以采取其他求解方法。

方法一:
Y = X H ^ X H Y = X H X H ^ H ^ = X H Y ∣ ∣ X ∣ ∣ 2 \begin{aligned} Y&=X\hat{H}\\ X^HY&=X^HX\hat{H}\\ \hat{H}&=\frac{X^HY}{||X||^2} \end{aligned} YXHYH^=XH^=XHXH^=X2XHY

方法二:
H ^ L S [ k ] \hat{H}_{LS}[k] H^LS[k]表示 H ^ L S \hat{H}_{LS} H^LS中的元素, k = 0 , 1 , 2 , . . . , N − 1 ( N 表 示 含 导 频 载 波 个 数 ) k=0,1,2,…,N-1(N表示含导频载波个数) k=0,1,2,...,N1N。若是没有载波间干扰(ICI),就可以直接求出每个子载波上的LS信道估计:

H ^ L S [ k ] = Y [ k ] X [ k ] , k = 0 , 1 , 2 , . . . , N − 1 \hat{H}_{LS}[k]=\frac{Y[k]}{X[k]}, k=0,1,2,…,N-1 H^LS[k]=X[k]Y[k],k=0,1,2,...,N1

MMSE信道估计

MMSE估计是在LS估计的基础上增加了加权矩阵W,改用最小均方误差准则进行优化。
考虑LS估计的最优解,即 H ^ L S = X − 1 Y \hat{H}_{LS}=X^{-1}Y H^LS=X1Y。利用加权矩阵W,定义MMSE的估计为 H ^ = H ^ M M S E = W H ^ L S \hat{H}=\hat{H}_{MMSE}=W\hat{H}_{LS} H^=H^MMSE=WH^LS
请添加图片描述

根据最小均方误差准则,有如下目标函数:
J ( H ^ ) M S E = E { ∣ ∣ e ∣ ∣ 2 } = E { ∣ ∣ H − H ^ ∣ ∣ 2 } = E { ∣ ∣ H − W H ^ L S ∣ ∣ 2 } \begin{aligned} J(\hat{H})_{MSE}&=E\{ ||e||^2\}\\ &=E\{||H-\hat{H}||^2\} \\ &=E\{||H-W\hat{H}_{LS}||^2\} \\ \end{aligned} J(H^)MSE=E{
e2}
=E{
HH^2}
=E{
HWH^LS2}

由矩阵论知识可知,当 e = H − H ^ = H − W H ^ L S e=H-\hat{H}=H-W\hat{H}_{LS} e=HH^=HWH^LS H ^ L S \hat{H}_{LS} H^LS正交时, J ( H ^ ) M S E J(\hat{H})_{MSE} J(H^)MSE可取得最小值。即满足
E { e H ^ L S H } = E { ( H − H ^ ) H ^ L S H } = E { ( H − W H ^ L S ) H ^ L S H } = E { H H ^ L S H } − W E { H ^ L S H ^ L S H } = R H H ^ L S − W R H ^ L S H ^ L S = 0 \begin{aligned} E\{e\hat{H}_{LS}^H\}&=E\{(H-\hat{H})\hat{H}_{LS}^H\}\\ &=E\{(H-W\hat{H}_{LS})\hat{H}_{LS}^H\}\\ &=E\{H\hat{H}_{LS}^H\}-WE\{\hat{H}_{LS}\hat{H}_{LS}^H\}\\ &=R_{H\hat{H}_{LS}}-WR_{\hat{H}_{LS}\hat{H}_{LS}}=0 \end{aligned} E{
eH^LSH}
=E{
(HH^)H^LSH}
=E{
(HWH^LS)H^LSH}
=E{
HH^LSH}WE{
H^LSH^LSH}
=RHH^LSWRH^LSH^LS=0


W = R H H ^ L S R H ^ L S H ^ L S − 1 W=R_{H\hat{H}_{LS}}R_{\hat{H}_{LS}\hat{H}_{LS}}^{-1} W=RHH^LSRH^LSH^LS1
其中 R H ^ L S H ^ L S R_{\hat{H}_{LS}\hat{H}_{LS}} RH^LSH^LS为矩阵 H ^ L S \hat{H}_{LS} H^LS的自相关矩阵,考虑到 H ^ L S = X − 1 Y = H + X − 1 Z \hat{H}_{LS}=X^{-1}Y=H+X^{-1}Z H^LS=X1Y=H+X1Z,则有
R H ^ L S H ^ L S = E { H ^ L S H ^ L S H } = E { X − 1 Y ( X − 1 Y ) H } = E { ( H + X − 1 Z ) ( H + X − 1 Z ) H } = E { H H H + X − 1 Z H H + H Z H ( X − 1 ) H + X − 1 Z Z H ( X − 1 ) H } = E { H H H } + E { X − 1 Z Z H ( X − 1 ) H } = R H H + σ z 2 σ x 2 I \begin{aligned} R_{\hat{H}_{LS}\hat{H}_{LS}}&=E\{\hat{H}_{LS}\hat{H}_{LS}^H\}\\ &=E\{X^{-1}Y(X^{-1}Y)^H\}\\ &=E\{(H+X^{-1}Z)(H+X^{-1}Z)^H\}\\ &=E\{HH^H+X^{-1}ZH^H+HZ^H(X^{-1})^H+X^{-1}ZZ^H(X^{-1})^H\}\\ &= E\{HH^H\}+E\{X^{-1}ZZ^H(X^{-1})^H\}\\ &= R_{HH}+\frac{\sigma_z^2}{\sigma_x^2}I \end{aligned} RH^LSH^LS=E{
H^LSH^LSH}
=E{
X1Y(X1Y)H}
=E{
(H+X1Z)(H+X1Z)H}
=E{
HHH+X1ZHH+HZH(X1)H+X1ZZH(X1)H}
=E{
HHH}+E{
X1ZZH(X1)H}
=RHH+σx2σz2I

R H H ^ L S R_{H\hat{H}_{LS}} RHH^LS为矩阵 H H H H ^ L S \hat{H}_{LS} H^LS的互相关矩阵。由上式,我们最终可得:
H ^ = W H ^ L S = R H H ^ L S R H ^ L S H ^ L S − 1 H ^ L S = R H H ^ L S ( R H H + σ z 2 σ x 2 I ) − 1 H ^ L S \begin{aligned} \hat{H}&=W\hat{H}_{LS}=R_{H\hat{H}_{LS}}R_{\hat{H}_{LS}\hat{H}_{LS}}^{-1}\hat{H}_{LS}\\ &=R_{H\hat{H}_{LS}}(R_{HH}+\frac{\sigma_z^2}{\sigma_x^2}I)^{-1}\hat{H}_{LS} \end{aligned} H^=WH^LS=RHH^LSRH^LSH^LS1H^LS=RHH^LS(RHH+σx2σz2I)1H^LS

LMMSE信道估计

LMMSE信道估计是在MMSE信道估计的基础上做了一次线性平滑。考虑到MMSE需要计算 ( R H H + σ z 2 σ x 2 I ) − 1 (R_{HH}+\frac{\sigma_z^2}{\sigma_x^2}I)^{-1} (RHH+σx2σz2I)1,随着噪声变化和输入信号x的变化,该矩阵求逆的运算量很大而且需要不停地重新计算,极大地占据了计算资源,实时性很差。
因此LMMSE采用了一种线性最小均方误差的估算方法,用期望值的形式代替了 σ z 2 σ x 2 \frac{\sigma_z^2}{\sigma_x^2} σx2σz2,可将MMSE的估计准则简化为:
H ^ ( k ) = R H H ^ L S ( R H H + β S N R ) − 1 H ^ L S ( k ) \begin{aligned} \hat{H}(k)=R_{H\hat{H}_{LS}}(R_{HH}+\frac{\beta}{SNR})^{-1}\hat{H}_{LS}(k) \end{aligned} H^(k)=RHH^LS(RHH+SNRβ)1H^LS(k)
如此一来,因为 R H H R_{HH} RHH β S N R \frac{\beta}{SNR} SNRβ都是常数,在一次信息传输过程中保持不变,只需要计算一次其逆矩阵即可,大大减小了计算量。
β \beta β为信道调制类型参数,且不同类型的调制信道其调制参数也不同。
若信道采用 16QAM 调制,则 β \beta β 17 9 \frac{17}{9} 917。若采用 QPSK 调制,则 β \beta β取 1。

LMMSE信道估计的协方差矩阵 σ 2 \sigma^2 σ2可表示为
σ 2 = R H H ^ L S − [ R H H ^ L S ( R H H + β S N R ) − 1 H ^ L S ] \sigma^2=R_{H\hat{H}_{LS}}-[R_{H\hat{H}_{LS}}(R_{HH}+\frac{\beta}{SNR})^{-1}\hat{H}_{LS}] σ2=RHH^LS[RHH^LS(RHH+SNRβ)1H^LS]
LMMSE信道估计的均方误差可表示为:
M S E L M M S E = 1 N t r { σ 2 } MSE_{LMMSE}=\frac{1}{N}tr\{
{\sigma^2}\}
MSELMMSE=N1tr{
σ2}

t r { } tr\{\} tr{
}
表示求迹运算

LMMSE实现

最新文章

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/219084.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • 奇点临近-人工智能的时代已经来了[通俗易懂]

    当人们看到太多相同的时候,也许我们很无知;当人们看到太多不同的时候,也许我们视野不够大;当人们同时看到不同和相同的时候,也许恰是我们智慧的原点。奇点临近奇点临近这本书,是一本预测人工智能和科技未来的奇书。目前人工智能处于快速发展的阶段,在很多领域中已经能够越来越多的看到人工智能产品的出现,改变着这个世界,改变着我们每一个人的生活。在谈人工智能之前,先聊聊什么是 “奇点” ,奇点 这个…

  • python基础之五大标准数据类型

    python基础之五大标准数据类型学习一门语言,往往都是从HelloWorld开始。但是笔者认为,在一个黑框框中输出一个“你好,世界”并没有什么了不起,要看透事物的本质,熟悉一门语言,就要了解其底层,就是我们常常说的基础。本篇从p

  • 使用openstack搭建私有云[通俗易懂]

    使用openstack搭建私有云[通俗易懂]OpenStack部署一、环境准备1、网络环境主机IPcontroller10.0.0.51compute110.0.0.61修改hosts文件cat/etc/hosts10.0.0.51 controller10.0.0.61 compute1关闭selinux、firewalldcatenv_set.sh#!/bin/bashsystemctlstopfirewalldsystemctldisablefirewallds

  • PLC编程从入门到精通视频教程【副业学习会】

    PLC编程从入门到精通视频教程【副业学习会】PLC编程视频教程共73课,从入门到精通。从基础讲起,一步步提高PLC编程技巧。本套教程分为:电工基础教程、PLC入门教程、PLC高级教程、PLC经验与技巧、触摸屏(人机)编程教学。此视频通俗易懂,而且很实用。![在这里插入图片描述](https://img-blog.csdnimg.cn/20210715203622364.png)课程目录:第1章电工基础教程01电工基础的简介.mp402工厂用电.mp403看懂基本电路.mp404自锁、正反转电路.m…

  • PHP 使用 ElasticSearch 做搜索

    PHP 使用 ElasticSearch 做搜索

  • 基于Neo4j构建的外贸企业关系图谱做企业相似度查询「建议收藏」

    基于Neo4j构建的外贸企业关系图谱做企业相似度查询「建议收藏」基于Neo4j的外贸企业关系图谱做企业相似度查询一、外贸企业关系图谱的构建1.从Oracle导出数据2.导入数据到Neo4j3.Neo4j数据展示二、用Cypher做企业关联查询1.多层关系查询2.基于邻居信息的Jaccard相似度计算3.加权关联度得分计算三、总结一、外贸企业关系图谱的构建说来惭愧,本科、研究生期间还没写过博客,正巧最近在写论文,想结合自己开发的项目来构思,于是就通过这篇博客记录一下使用Neo4j图数据库来做企业相似度查询的过程,方便以后参考。这次外贸企业关系图谱的构建用到以前项目中

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号