metrics小常识

metrics小常识Metrics,我们听到的太多了,熟悉大数据系统的不可能没听说过metrics,当我们需要为某个系统某个服务做监控、做统计,就需要用到Metrics。举个例子,一个图片压缩服务:每秒钟的请求数是多少(TPS)?平均每个请求处理的时间?请求处理的最长耗时?等待处理的请求队列长度?又或者一个缓存服务:缓存的命中率?平均查询缓存的时间?基本上每一个服务、应用都需要

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全家桶1年46,售后保障稳定

Metrics,我们听到的太多了,熟悉大数据系统的不可能没听说过metrics,当我们需要为某个系统某个服务做监控、做统计,就需要用到Metrics。

举个例子,一个图片压缩服务:

  1. 每秒钟的请求数是多少(TPS)?
  2. 平均每个请求处理的时间?
  3. 请求处理的最长耗时?
  4. 等待处理的请求队列长度?

又或者一个缓存服务:

  1. 缓存的命中率?
  2. 平均查询缓存的时间?

基本上每一个服务、应用都需要做一个监控系统,这需要尽量以少量的代码,实现统计某类数据的功能。

以 Java 为例,目前最为流行的 metrics 库是来自 Coda Hale 的 dropwizard/metrics,该库被广泛地应用于各个知名的开源项目中。例如 Hadoop,Kafka,Spark,JStorm 中。

本文就结合范例来主要介绍下 dropwizard/metrics 的概念和用法。

Maven 配置

我们需要在pom.xml中依赖 metrics-core 包:

<dependencies>
    <dependency>
        <groupId>io.dropwizard.metrics</groupId>
        <artifactId>metrics-core</artifactId>
        <version>${metrics.version}</version>
    </dependency>
</dependencies>

Jetbrains全家桶1年46,售后保障稳定

Metric Registries

MetricRegistry类是Metrics的核心,它是存放应用中所有metrics的容器。也是我们使用 Metrics 库的起点。

MetricRegistry registry = new MetricRegistry();

每一个 metric 都有它独一无二的名字,Metrics 中使用句点名字,如 com.example.Queue.size。当你在 com.example.Queue 下有两个 metric 实例,可以指定地更具体:com.example.Queue.requests.size 和 com.example.Queue.response.size 。使用MetricRegistry类,可以非常方便地生成名字

MetricRegistry.name(Queue.class, "requests", "size")
MetricRegistry.name(Queue.class, "responses", "size")

Metrics 数据展示

Metircs 提供了 Report 接口,用于展示 metrics 获取到的统计数据。metrics-core中主要实现了四种 reporter:JMXconsoleSLF4J, 和 CSV。 在本文的例子中,我们使用 ConsoleReporter 。

五种 Metrics 类型

Gauges 

最简单的度量指标,只有一个简单的返回值,或者叫瞬时状态,例如,我们想衡量一个待处理队列中任务的个数,代码如下:

public class GaugeTest {
      
      

    public static Queue<String> q = new LinkedList<String>();

    public static void main(String[] args) throws InterruptedException {
      
      
        MetricRegistry registry = new MetricRegistry();
        ConsoleReporter reporter = ConsoleReporter.forRegistry(registry).build();
        reporter.start(1, TimeUnit.SECONDS);

        registry.register(MetricRegistry.name(GaugeTest.class, "queue", "size"), 
        new Gauge<Integer>() {
      
      

            public Integer getValue() {
      
      
                return q.size();
            }
        });

        while(true){
      
      
            Thread.sleep(1000);
            q.add("Job-xxx");
        }
    }
}

运行之后的结果如下:

-- Gauges ------------------------------------------------
com.alibaba.wuchong.metrics.GaugeTest.queue.size
             value = 6

其中第7行和第8行添加了ConsoleReporter,可以每秒钟将度量指标打印在屏幕上,理解起来会更清楚。

但是对于大多数队列数据结构,我们并不想简单地返回queue.size(),因为java.utiljava.util.concurrent中实现的#size()方法很多都是 O(n) 的复杂度,这会影响 Gauge 的性能。

Counters

Counter 就是计数器,Counter 只是用 Gauge 封装了 AtomicLong 。我们可以使用如下的方法,使得获得队列大小更加高效。

public class CounterTest {
      
      

    public static Queue<String> q = new LinkedBlockingQueue<String>();

    public static Counter pendingJobs;

    public static Random random = new Random();

    public static void addJob(String job) {
      
      
        pendingJobs.inc();
        q.offer(job);
    }

    public static String takeJob() {
      
      
        pendingJobs.dec();
        return q.poll();
    }

    public static void main(String[] args) throws InterruptedException {
      
      
        MetricRegistry registry = new MetricRegistry();
        ConsoleReporter reporter = ConsoleReporter.forRegistry(registry).build();
        reporter.start(1, TimeUnit.SECONDS);

        pendingJobs = registry.counter(MetricRegistry.name(Queue.class,"pending-jobs","size"));

        int num = 1;
        while(true){
      
      
            Thread.sleep(200);
            if (random.nextDouble() > 0.7){
      
      
                String job = takeJob();
                System.out.println("take job : "+job);
            }else{
      
      
                String job = "Job-"+num;
                addJob(job);
                System.out.println("add job : "+job);
            }
            num++;
        }
    }
}

运行之后的结果大致如下:

add job : Job-15
add job : Job-16
take job : Job-8
take job : Job-10
add job : Job-19
15-8-1 16:11:31 ============================================
-- Counters ----------------------------------------------
java.util.Queue.pending-jobs.size
             count = 5

Meters

Meter度量一系列事件发生的速率(rate),例如TPS。Meters会统计最近1分钟,5分钟,15分钟,还有全部时间的速率。

public class MeterTest {
      
      

    public static Random random = new Random();

    public static void request(Meter meter){
      
      
        System.out.println("request");
        meter.mark();
    }

    public static void request(Meter meter, int n){
      
      
        while(n > 0){
      
      
            request(meter);
            n--;
        }
    }

    public static void main(String[] args) throws InterruptedException {
      
      
        MetricRegistry registry = new MetricRegistry();
        ConsoleReporter reporter = ConsoleReporter.forRegistry(registry).build();
        reporter.start(1, TimeUnit.SECONDS);

        Meter meterTps = registry.meter(MetricRegistry.name(MeterTest.class,"request","tps"));

        while(true){
      
      
            request(meterTps,random.nextInt(5));
            Thread.sleep(1000);
        }

    }
}

运行结果大致如下:

request
15-8-1 16:23:25 ============================================

-- Meters ------------------------------------------------
com.alibaba.wuchong.metrics.MeterTest.request.tps
             count = 134
         mean rate = 2.13 events/second
     1-minute rate = 2.52 events/second
     5-minute rate = 3.16 events/second
    15-minute rate = 3.32 events/second

注:非常像 Unix 系统中 uptime 和 top 中的 load。

Histograms

Histogram统计数据的分布情况。比如最小值,最大值,中间值,还有中位数,75百分位, 90百分位, 95百分位, 98百分位, 99百分位, 和 99.9百分位的值(percentiles)。

比如request的大小的分布:

public class HistogramTest {
      
      
    public static Random random = new Random();

    public static void main(String[] args) throws InterruptedException {
      
      
        MetricRegistry registry = new MetricRegistry();
        ConsoleReporter reporter = ConsoleReporter.forRegistry(registry).build();
        reporter.start(1, TimeUnit.SECONDS);

        Histogram histogram = new Histogram(new ExponentiallyDecayingReservoir());
        registry.register(MetricRegistry.name(HistogramTest.class, "request", "histogram"), histogram);
        
        while(true){
      
      
            Thread.sleep(1000);
            histogram.update(random.nextInt(100000));
        }

    }
}

运行之后结果大致如下:

-- Histograms --------------------------------------------
java.util.Queue.queue.histogram
             count = 56
               min = 1122
               max = 99650
              mean = 48735.12
            stddev = 28609.02
            median = 49493.00
              75% <= 72323.00
              95% <= 90773.00
              98% <= 94011.00
              99% <= 99650.00
            99.9% <= 99650.00

Timers

Timer其实是 Histogram 和 Meter 的结合, histogram 某部分代码/调用的耗时, meter统计TPS。

public class TimerTest {
      
      

    public static Random random = new Random();

    public static void main(String[] args) throws InterruptedException {
      
      
        MetricRegistry registry = new MetricRegistry();
        ConsoleReporter reporter = ConsoleReporter.forRegistry(registry).build();
        reporter.start(1, TimeUnit.SECONDS);

        Timer timer = registry.timer(MetricRegistry.name(TimerTest.class,"get-latency"));

        Timer.Context ctx;

        while(true){
      
      
            ctx = timer.time();
            Thread.sleep(random.nextInt(1000));
            ctx.stop();
        }

    }

}

运行之后结果如下:

-- Timers ------------------------------------------------
com.alibaba.wuchong.metrics.TimerTest.get-latency
             count = 38
         mean rate = 1.90 calls/second
     1-minute rate = 1.66 calls/second
     5-minute rate = 1.61 calls/second
    15-minute rate = 1.60 calls/second
               min = 13.90 milliseconds
               max = 988.71 milliseconds
              mean = 519.21 milliseconds
            stddev = 286.23 milliseconds
            median = 553.84 milliseconds
              75% <= 763.64 milliseconds
              95% <= 943.27 milliseconds
              98% <= 988.71 milliseconds
              99% <= 988.71 milliseconds
            99.9% <= 988.71 milliseconds

其他

初次之外,Metrics还提供了 HealthCheck 用来检测某个某个系统是否健康,例如数据库连接是否正常。还有Metrics Annotation,可以很方便地实现统计某个方法,某个值的数据。感兴趣的可以点进链接看看。

使用经验总结

一般情况下,当我们需要统计某个函数被调用的频率(TPS),会使用Meters。当我们需要统计某个函数的执行耗时时,会使用Histograms。当我们既要统计TPS又要统计耗时时,我们会使用Timers。

转   自 http://wuchong.me/blog/2015/08/01/getting-started-with-metrics/

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/219079.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • WSUS Troubleshooting guide「建议收藏」

    WSUS Troubleshooting guide「建议收藏」TroubleshootingguideforissueswhereWSUSclientsarenotreportingin来自于WSUSTEAMBLOGThisguideiswrittentoassistspecificallyintroubleshootingWSUSwhenclientsarenotrepor…

  • SPI通讯协议介绍「建议收藏」

    SPI通讯协议介绍「建议收藏」来到SPI通讯协议了。废话两句,“SPI很重要”,这是我在学校时候听那些单片机开发工程师说的。出来实习,到后来工作,确实如此,SPI的使用很常见,那么自然重要咯。  SPI(Serialperipheralinterface)即串行外围设备接口,是由Motorola首先在其MC68HCxx系列单片机上定义的,基于高速全双工总线的通讯协议。(又是高速,而且全双工,确实强大)被广泛应用于ADC、LC

    2022年10月15日
  • 双重指针赋值

    双重指针赋值int*p;p=(int*)mallloc(sizeof(int)*len);*p=1;//p[0]=1*(p+1)=2;//p[1]=2二:双重指针赋值bool**p;p=(bool**)malloc(sizeof(bool*));cout<<“inputarray”<<endl;for(inti=0;i<m;…

  • cefsharp教程_flutter grpc

    cefsharp教程_flutter grpc需求注册常规快捷键比如F5刷新F12打开开发者工具; 自定义配置文件; 注册JavaScript交互API通过Winform调取设备或者系统数据; 屏蔽鼠标右键; 自定义文件下载功能; 集成自动更新服务;…

  • cap理论P(分区容错)的理解

    cap理论P(分区容错)的理解一个分布式系统里面,节点组成的网络本来应该是连通的。然而可能因为一些故障,使得有些节点之间不连通了,整个网络就分成了几块区域。数据就散布在了这些不连通的区域中。这就叫分区。当你一个数据项只在一个节点中保存,那么分区出现后,和这个节点不连通的部分就访问不到这个数据了。这时分区就是无法容忍的。提高分区容忍性的办法就是一个数据项复制到多个节点上,那么出现分区之后,这一数据项就可能分布到各个区里。容忍性就提高了。然而,要把数据复制到多个节点,就会带来一致性的问题,就是多个节点上面的数据可能是不一致的。要保证一

  • MySQL修改端口号(修改mysql的端口号会有问题吗)

    关于mysql的端口号先登录mysql:fegy@fegy-X542UN:~$mysql-uroot-pEnterpassword:WelcometotheMySQLmonitor.Commandsendwith;or\g.YourMySQLconnectionidis4Serverversion:5.7.26-0ubuntu0.18.0…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号