数字图像处理均值滤波matlab函数_均值滤波怎么计算

数字图像处理均值滤波matlab函数_均值滤波怎么计算图像的平滑、锐化都是利用掩模操作来完成的。通过掩模操作实现一种邻域运算,待处理像素点的结果由邻域的图像像素以及相应的与邻域有相同维数的子图像得到。这些子图像被称为滤波器、掩模、核、模板或窗口;掩模运算的数学含义是卷积(或互相关)运算;掩模子图像中的值是系数值,而不是灰度值;……

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全家桶1年46,售后保障稳定

图像的平滑、锐化都是利用掩模操作来完成的。通过掩模操作实现一种邻域运算,待处理像素点的结果由邻域的图像像素以及相应的与邻域有相同维数的子图像得到。这些子图像被称为滤波器、掩模、核、模板或窗口;
掩模运算的数学含义是卷积(或互相关)运算;
掩模子图像中的值是系数值,而不是灰度值;
卷积示例图:
示例
一般来说,在MN的图像f(x,y)上,用mn大小的滤波器掩模进行线性滤波由下式给出:
公式
模板为1*5的中值滤波和均值滤波的对比:
在这里插入图片描述

均值滤波

简单来说就是对某个区域内的像素值取平均值代替原像素值
常用的3*3的滤波器掩模为:
在这里插入图片描述
3*3
一幅M×N的图像经过m×n的加权均值滤波器滤波的过程可由下式给出:

在这里插入图片描述
一般选取n*n的模板,便于运算,下面给出示例代码:

img = imread('');

[M , N] = size(img);%图片尺寸
img_result = zeros(M, N);%预生成,提高速度

muban_size = 3;%模板尺寸
expand_size = floor(muban_size / 2);%扩展尺寸
muban = 1 / (muban_size * muban_size) .* ones(muban_size, muban_size);


expand_img = double(wextend('2D','zpd', img, expand_size));%扩展0,转double为了矩阵运算

for i=1:M
    for j=1:N
        ave = sum( sum( expand_img(i:i+muban_size-1,j:j+muban_size-1) .* muban)); %取出扩展元素与模板相乘,并求矩阵元素之和
        img_result(i,j) = ave;
    end
end

img_result = uint8(img_result);%转int8,图像
subplot(1 ,2, 1);
title('原图像')
imshow(img)
subplot(1 ,2, 2);
imshow(img_result)
da = ['模板大小为' num2str(muban_size) ',变化后的图像'];
title(da)

Jetbrains全家桶1年46,售后保障稳定

结果示例:
示例
可见均值滤波对于噪声有一定的抑制作用,但是会出现部分的涂抹感。

中值滤波

中值滤波和均值滤波不同的地方是,中值滤波是对图像的像素值进行排序,取中间的像素值赋给新的图像。
主要功能:使拥有不同灰度的点看起来更接近于它的邻近值。
主要用途:去除“椒盐”噪声

示例代码:

img = imread('');

[M , N] = size(img);%图片尺寸
img_result = zeros(M, N);%预生成,提高速度

muban_size = 3;%模板尺寸
expand_size = floor(muban_size / 2);%扩展尺寸
muban = ones(muban_size, muban_size);


expand_img = double(wextend('2D','zpd', img, expand_size));%扩展0,转double为了矩阵运算

for i=1:M
    for j=1:N
        mat = expand_img(i:i+muban_size-1,j:j+muban_size-1) .* muban; %取出x1中从(i,j)开始的n行n列元素与模板相乘
        mat = mat(:);%转数组
        mat = sort(mat);%排序
        if mod(muban_size, 2)==1
            img_result(i,j) = mat(floor(muban_size*muban_size/2)+1);%取中间
        else
            img_result(i,j) = (mat(muban_size*muban_size/2) + mat(muban_size*muban_size/2+1))/2;
        end
    end
end

img_result = uint8(img_result);%转int8,图像
subplot(1 ,2, 1);
title('原图像')
imshow(img)
subplot(1 ,2, 2);
imshow(img_result)
da = ['模板大小为' num2str(muban_size) ',变化后的图像'];
title(da)

结果示例:
示例
效果好像特别好。

一些其他的中值滤波器:

模板
另:
中值滤波的窗口形状和尺寸对滤波效果影响较大,不同的图像内容和不同的应用要求,往往采用不同的窗口形状和尺寸。常用的二维中值滤波窗口有线状、方形、圆形、十字形以及圆环形等。
窗口尺寸一般先用3X3,再取5X 5逐渐增大,直到滤波效果满意为止。就经验来讲,对于有缓变的较长轮廓线物体的图像,采用方形或圆形窗口为宜。对于包含有尖顶物体的图像,用十字形窗口,而窗口大小则以不超过图像中最小有效物体的尺寸为宜。如果图像中点、线、尖角细节较多,则不宜采用中值滤波

最后,点个赞?

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/213499.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

  • 判断端口通不通的几种方法「建议收藏」

    判断端口通不通的几种方法「建议收藏」判断端口通不通的几种方法

  • centos7安装Pycharm_pycharm安装库

    centos7安装Pycharm_pycharm安装库DownloadPyCharm:PythonIDEforProfessionalDevelopersbyJetBrainshttps://www.jetbrains.com/pycharm/download/#section=linux官网下载pycharm的linux版下载后解压tar-xzvfpycharm-professional-2021.1.3.tar.gz-C/tmpcd/tmp/pycharm-2021.1.3/bin/运行pycharm.

  • 让人“眼前一亮、不明觉厉”的互联网技术PPT「建议收藏」

    让人“眼前一亮、不明觉厉”的互联网技术PPT「建议收藏」为什么选择分享一起如此“鸡肋”的博文呢?我一直有个习惯:理论和实践,两手抓两手也要硬,最近一直搞技术,手里很多的新技术资料还未来得及消化,遂学习总结,加以分享。在做互联网产品功能介绍、互联网产品技术路线、技术人年度总结、互联网教育培训、互联网技术宣讲、技术人毕业答辩等场合时,可以参照以下PPT,让你思如泉涌,格调升级,瞬间征服观众~

  • mysql导出数据库

    mysql导出数据库mysql命令行导出数据库mysqldump进行数据库导出备份命令行提示“拒绝访问”

  • 完整全面的Java资源库—–转载[通俗易懂]

    完整全面的Java资源库—–转载[通俗易懂]构建这里搜集了用来构建应用程序的工具。ApacheMaven:Maven使用声明进行构建并进行依赖管理,偏向于使用约定而不是配置进行构建。Maven优于ApacheAnt。后者采用了一种过程化的方式进行配置,所以维护起来相当困难。Gradle:Gradle采用增量构建。Gradle通过Groovy编程而不是传统的XML声明进行配置。Gradle可以很好地配合Maven…

  • 如何求逆矩阵_副对角线矩阵的逆矩阵怎么求

    如何求逆矩阵_副对角线矩阵的逆矩阵怎么求作为一只数学基础一般般的程序猿,有时候连怎么求逆矩阵都不记得,之前在wikiHow上看了一篇不错的讲解如何求3×3矩阵的逆矩阵的文章,特转载过来供大家查询以及自己备忘。当然这个功能在matlab里面非常容易实现,只要使用inv函数或A^-1即可,但是有时候参加个考试什么的还是要笔算的哈哈~假设有如下的3×3矩阵,第一步需要求出det(M),也就是矩阵M的行列式的值。行列式的值通常显示

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号