Rectified Linear Unit (ReLU)

Rectified Linear Unit (ReLU)TheRectifiedLinearUnit(ReLU)computesthefunctionf(x)=max(0,x)f(x)=max(0,x),whichissimplythresholdedatzero.ThereareseveralprosandconstousingtheReLUs:(Pros)Comparedtosigmoid/tan

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全家桶1年46,售后保障稳定

ReLUThe Rectified Linear Unit (ReLU) computes the function f(x)=max(0,x) , which is simply thresholded at zero.

There are several pros and cons to using the ReLUs:

  1. (Pros) Compared to sigmoid/tanh neurons that involve expensive operations (exponentials, etc.), the ReLU can be implemented by simply thresholding a matrix of activations at zero. Meanwhile, ReLUs does not suffer from saturating.
  2. (Pros) It was found to greatly accelerate the convergence of stochastic gradient descent compared to the sigmoid/tanh functions. It is argued that this is due to its linear, non-saturating form.
  3. (Cons) Unfortunately, ReLU units can be fragile during training and can “die”. For example, a large gradient flowing through a ReLU neuron could cause the weights to update in such a way that the neuron will never activate on any datapoint again. If this happens, then the gradient flowing through the unit will forever be zero from that point on. That is, the ReLU units can irreversibly die during training since they can get knocked off the data manifold. For example, you may find that as much as 40% of your network can be “dead” (i.e., neurons that never activate across the entire training dataset) if the learning rate is set too high. With a proper setting of the learning rate this is less frequently an issue.

Leaky ReLU

Leaky ReLU Leaky ReLUs are one attempt to fix the “dying ReLU” problem. Instead of the function being zero when x<0 , a leaky ReLU will instead have a small negative slope(of 0.01, or so). That is, the function computes f(x)=ax if x<0 and f(x)=x if x0 , where a is a small constant. Some people report success with this form of activation function, but the results are not always consistent.

Parametric ReLU

rectified unit family
The first variant is called parametric rectified linear unit (PReLU). In PReLU, the slopes of negative part are learned from data rather than pre-defined.

Randomized ReLU

In RReLU, the slopes of negative parts are randomized in a given range in the training, and then fixed in the testing. As mentioned in [B. Xu, N. Wang, T. Chen, and M. Li. Empirical Evaluation of Rectified Activations in Convolution Network. In ICML Deep Learning Workshop, 2015.], in a recent Kaggle National Data Science Bowl (NDSB) competition, it is reported that RReLU could reduce overfitting due to its randomized nature. Moreover, suggested by the NDSB competition winner, the random

ai
in training is sampled from 1/U(3,8) and in test time it is fixed as its expectation, i.e., 2/(l+u)=2/11 .

In conclusion, three types of ReLU variants all consistently outperform the original ReLU in these three data sets. And PReLU and RReLU seem better choices.

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/210108.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

  • 数据结构:树

    数据结构:树

  • 通过广域网(Intelnet)进行远程唤醒[或开机] 图解

    通过广域网(Intelnet)进行远程唤醒[或开机] 图解WAN远程唤醒与LAN远程唤醒有着诸多不同,WAN远程唤醒首先需要主板、网卡等硬件的支持,需要一条有效的Intelnet连接,与Lan远程唤醒不同的是,WAN远程唤醒需要经过路由器,因此下面我就来详细讲解如何在路由器上进行设置,以支持WAN远程唤醒,前提是,你已经成功进行了LAN远程唤醒。

  • Java安全之原生readObject方法解读

    Java安全之原生readObject方法解读0x00前言在上篇文章分析shiro中,遇到了Shiro重写了ObjectInputStream的resolveClass导致的一些基于Invoke

    2021年12月12日
  • java异常处理之throw, throws,try和catch[通俗易懂]

    java异常处理之throw, throws,try和catch[通俗易懂]   程序运行过程中可能会出现异常情况,比如被0除、对负数计算平方根等,还有可能会出现致命的错误,比如内存不足,磁盘损坏无法读取文件等,对于异常和错误情况的处理,统称为异常处理。   Java异常处理主要通过5个关键字控制:try、catch、throw、throws和finally。try的意思是试试它所包含的代码段中是否会发生异常;而catch当有异常时抓住它,并进行相应的处理,使程序不受

  • bzero memset_memset是什么函数

    bzero memset_memset是什么函数 bzero函数函数原型:voidbzero(void*s,intn);头文件:#include&lt;string.h&gt;功能:将字符串s的前n个字节置为0,一般来说n通常取sizeof(s),将整块空间清零。返回值:无返回值例子:将一个数组清零:charstr[10];bzero(str,…

    2022年10月13日
  • html视频标签属性_html音频标签

    html视频标签属性_html音频标签一、基本语法 代码如下: embedsrc=url 说明:embed可以用来插入各种多媒体,格式可以是Midi、Wav、AIFF、AU、MP3等等,Netscape及

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号