Rectified Linear Unit (ReLU)

Rectified Linear Unit (ReLU)TheRectifiedLinearUnit(ReLU)computesthefunctionf(x)=max(0,x)f(x)=max(0,x),whichissimplythresholdedatzero.ThereareseveralprosandconstousingtheReLUs:(Pros)Comparedtosigmoid/tan

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全家桶1年46,售后保障稳定

ReLUThe Rectified Linear Unit (ReLU) computes the function f(x)=max(0,x) , which is simply thresholded at zero.

There are several pros and cons to using the ReLUs:

  1. (Pros) Compared to sigmoid/tanh neurons that involve expensive operations (exponentials, etc.), the ReLU can be implemented by simply thresholding a matrix of activations at zero. Meanwhile, ReLUs does not suffer from saturating.
  2. (Pros) It was found to greatly accelerate the convergence of stochastic gradient descent compared to the sigmoid/tanh functions. It is argued that this is due to its linear, non-saturating form.
  3. (Cons) Unfortunately, ReLU units can be fragile during training and can “die”. For example, a large gradient flowing through a ReLU neuron could cause the weights to update in such a way that the neuron will never activate on any datapoint again. If this happens, then the gradient flowing through the unit will forever be zero from that point on. That is, the ReLU units can irreversibly die during training since they can get knocked off the data manifold. For example, you may find that as much as 40% of your network can be “dead” (i.e., neurons that never activate across the entire training dataset) if the learning rate is set too high. With a proper setting of the learning rate this is less frequently an issue.

Leaky ReLU

Leaky ReLU Leaky ReLUs are one attempt to fix the “dying ReLU” problem. Instead of the function being zero when x<0 , a leaky ReLU will instead have a small negative slope(of 0.01, or so). That is, the function computes f(x)=ax if x<0 and f(x)=x if x0 , where a is a small constant. Some people report success with this form of activation function, but the results are not always consistent.

Parametric ReLU

rectified unit family
The first variant is called parametric rectified linear unit (PReLU). In PReLU, the slopes of negative part are learned from data rather than pre-defined.

Randomized ReLU

In RReLU, the slopes of negative parts are randomized in a given range in the training, and then fixed in the testing. As mentioned in [B. Xu, N. Wang, T. Chen, and M. Li. Empirical Evaluation of Rectified Activations in Convolution Network. In ICML Deep Learning Workshop, 2015.], in a recent Kaggle National Data Science Bowl (NDSB) competition, it is reported that RReLU could reduce overfitting due to its randomized nature. Moreover, suggested by the NDSB competition winner, the random

ai
in training is sampled from 1/U(3,8) and in test time it is fixed as its expectation, i.e., 2/(l+u)=2/11 .

In conclusion, three types of ReLU variants all consistently outperform the original ReLU in these three data sets. And PReLU and RReLU seem better choices.

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/210108.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • PHP会员找回密码功能的简单实现

    PHP会员找回密码功能的简单实现

    2021年10月21日
  • phpstorm2021.9激活码[最新免费获取]

    (phpstorm2021.9激活码)好多小伙伴总是说激活码老是失效,太麻烦,关注/收藏全栈君太难教程,2021永久激活的方法等着你。IntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,下面是详细链接哦~https://javaforall.cn/100143.htmlS32PGH0SQB-eyJsaWNlbnNlSWQi…

  • 关于HeartBleed漏洞的总结「建议收藏」

    关于HeartBleed漏洞的总结「建议收藏」一:前言HeartBleed漏洞又称为心脏出血漏洞,编号(CVE-2014-0160),产生原因:由于未能在memcpy()调用受害用户输入的内容作为长度参数之前正确进行边界检查。攻击者可以追踪OpenSSl所分配的64KB内存,将超出必要范围的字节信息复制到缓存当中,再返回缓存内容,这样一来,受害者的内存内容就会每次泄露64KB.简单来说,这就是OpenSSL缺陷造成的漏洞二:环境…

  • MP3的频率、比特率、码率与音质的关系

    MP3的频率、比特率、码率与音质的关系

    2021年11月29日
  • vrrp的配置实例_十宗罪案例简介

    vrrp的配置实例_十宗罪案例简介一、背景二、VRRP概念介绍三、实验操作一、背景局域网中的用户终端通常采用配置一个默认网关的形式访问外部网络,如果此时默认网关设备发生故障,将中断所有用户终端的网络访问,这很可能会给用户带来

  • JAVA中&&和&、||和|的区别?「建议收藏」

    JAVA中&&和&、||和|的区别?「建议收藏」问题一:JAVA中&amp;&amp;和&amp;、||和|(短路与和逻辑与、短路或和逻辑或)的区别?首先名称是不同的&&逻辑与  ||逻辑或  它们都是逻辑运算符& 按位与  | 按位或  它们都是位运算符if(a==1&&b==2) 这是说既要满足a=1也要满足b=2if(a==1||b==2) 这是说或者满足a=1或者要满足b=2而a&b或者a|b则是二进制的与…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号