大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。
Jetbrains全家桶1年46,售后保障稳定
1,Jacobian matrix and determinant
在向量微积分学中,雅可比矩阵是向量对应的函数(就是多变量函数,多个变量可以理解为一个向量,因此多变量函数就是向量函数)的一阶偏微分以一定方式排列形成的矩阵。
如果这个矩阵为方阵,那么这个方阵的行列式叫雅可比行列式。
2,雅可比矩阵数学定义
假设函数f可以将一个n维向量 x ⃗ \vec{x} x( x ⃗ ∈ R n \vec{x}\in R^n x∈Rn)变成一个m维向量f( x ⃗ \vec{x} x), f ( x ⃗ ) ∈ R m f(\vec{x})\in R^m f(x)∈Rm,
(显然f是由m个实函数组成的函数)
则函数f的雅可比矩阵 J f J_f Jf可以定义如下:
J f = [ ∂ f ∂ x 1 . . . ∂ f ∂ x n ] = [ ∂ f 1 ∂ x 1 . . . ∂ f 1 ∂ x n ⋮ ⋱ ⋮ ∂ f m ∂ x 1 . . . ∂ f m ∂ x n ] J_f= \left[ \begin{matrix} \frac{\partial f}{\partial x_1} & … & \frac{\partial f}{\partial x_n} \end{matrix} \right]= \left[ \begin{matrix} \frac{\partial f_1}{\partial x_1} & … & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots\\ \frac{\partial f_m}{\partial x_1} & … & \frac{\partial f_m}{\partial x_n} \\ \end{matrix} \right] Jf=[∂x1∂f...∂xn∂f]=⎣⎢⎡∂x1∂f1⋮∂x1∂fm...⋱...∂xn∂f1⋮∂xn∂fm⎦⎥⎤
对于单个元素而言,可以定义如下:
J i j = ∂ f i ∂ x j J_{ij}=\frac{\partial f_i}{\partial x_j} Jij=∂xj∂fi
函数f的雅可比矩阵的其它标记方法为 ∂ ( f 1 , . . . , f m ) ∂ ( x 1 , . . . , x n \frac{\partial (f_1, …, f_m)}{\partial (x_1, …, x_n} ∂(x1,...,xn∂(f1,...,fm)
3,例子
3.1 设函数f为二维空间到二维空间的变换
3.2 极坐标到笛卡尔坐标的变换
3.3 球坐标到笛卡尔坐标的变换
3.4 三维空间到四维空间的变换
3.5 三维空间到三维空间的变换
4,雅可比矩阵意义
雅可比矩阵 J f ( p ) J_f(p) Jf(p)就是函数f在n维空间某点p处的导数,它是一个线性映射(因为它是一个矩阵,矩阵本身代表着线性变换),它代表着函数f在点p处的最优线性逼近,也就是当x足够靠近点p时,我们有
f ( x ) ≈ f ( p ) + J f ( p ) ∗ ( x − p ) f(x)\thickapprox f(p)+J_f(p)*(x-p) f(x)≈f(p)+Jf(p)∗(x−p)
这跟2维空间中在某点附近线性逼近一段曲线很类似,如果雅可比矩阵只有一个元素,它就等于2维空间中曲线在某点处的导数。
Note: 微分的本质就是线性化,在局部用线性变化代替非线性变化。
5,雅可比行列式意义
代表经过变换后的空间与原空间的面积(2维)、体积(3维)等等的比例,也有人称缩放因子。
Reference
https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/209955.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...