常用泰勒级数展开[通俗易懂]

常用泰勒级数展开[通俗易懂]因为日常计算中经常需要做一些近似,而泰勒级数展开是其中最常用的一种,所以本篇整理了部分常见的(一元函数)泰勒公式展开

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全家桶1年46,售后保障稳定

因为日常计算中经常需要做一些近似,而泰勒级数展开是其中最常用的一种,所以本篇整理了部分常见的(一元函数)泰勒公式展开


一、泰勒中值定理

对于简单的多项式函数,我们往往是很喜欢的,但是我们要接触的往往是一些比较复杂的函数,所以一种自然而然的想法也就出来了,那就是利用多项式来近似逼近这些复杂的函数,这就不得不提我们非常熟悉的泰勒展开了,在具体列出常见的泰勒展开之前,我觉得还是有必要提一嘴泰勒中值定理的(好吧,其实是为了凑字数),下面就介绍一下泰勒中值定理。

  • 泰勒(Taylor)中值定理(一元函数)

如果函数 f ( x ) f(x) f(x)在含有 x 0 x_0 x0的某个开区间 ( a , b ) (a,b) (a,b)内具有知道 ( n + 1 ) (n+1) (n+1)阶的导数,则对任一 x ∈ ( a , b ) x\in(a,b) x(a,b),有
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + ⋯ + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + R n ( x ) f(x)=f(x_0)+f'(x_0)(x-x_0)+\frac{f”(x_0)}{2!}(x-x_0)^2+\cdots+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+R_n(x) f(x)=f(x0)+f(x0)(xx0)+2!f(x0)(xx0)2++n!f(n)(x0)(xx0)n+Rn(x)其中
R n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 R_n(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1} Rn(x)=(n+1)!f(n+1)(ξ)(xx0)n+1这里的 ξ \xi ξ x 0 x_0 x0 x x x之间的某个值。
这个定理则告诉我们,如果已知某个函数在某一点的 n + 1 n+1 n+1阶导数,那么我们原则上是可以将这个函数在这个点附近用一个多项式进行逼近的,但是上面的这个定理其实是基于一元函数的,为了方便以后的扩展,下面在简单介绍一下多元函数的泰勒中值定理。

  • 多元函数的泰勒中值定理

f = f ( x 1 , x 2 , ⋯   , x k ) f=f(x^1,x^2,\cdots,x^k) f=f(x1,x2,,xk)在点 ( x 0 1 , x 0 2 , ⋯   , x 0 k ) (x^1_0,x^2_0,\cdots,x^k_0) (x01,x02,,x0k)的某一领域内连续且有直到 n + 1 n+1 n+1阶的连续偏导数, ( x 0 1 + h 1 , x 0 2 + h 2 , ⋯   , x 0 k + h k ) \\(x^1_0+h_1,x^2_0+h_2,\cdots,x^k_0+h_k) (x01+h1,x02+h2,,x0k+hk)为此邻域内的任一点,则有
f ( x 0 1 + h 1 , x 0 2 + h 2 , ⋯   , x 0 k + h k ) = f ( x 0 1 , x 0 2 , ⋯   , x 0 k ) f(x^1_0+h_1,x^2_0+h_2,\cdots,x^k_0+h_k) = f(x^1_0,x^2_0,\cdots,x^k_0) f(x01+h1,x02+h2,,x0k+hk)=f(x01,x02,,x0k)

+ ∑ i = 1 , 2 , ⋯   , k ∂ f ( x 0 1 , x 0 2 , ⋯   , x 0 k ) ∂ x i h i + 1 2 ! ∑ i 1 = 1 k ∑ i 2 = 1 k ∂ 2 f ( x 0 1 , x 0 2 , ⋯   , x 0 k ) ∂ x i 1 ∂ x i 2 h i 1 h i 2 + +\sum_{i=1,2,\cdots,k}\frac{\partial{f(x^1_0,x^2_0,\cdots,x^k_0)}}{\partial{x^i}}h_i+\frac{1}{2!}\sum_{i_1=1}^{k}\sum_{ i_2=1}^{k}\frac{\partial^2f(x^1_0,x^2_0,\cdots,x^k_0)}{\partial{x^{i_1}}\partial{x^{i_2}}}h_{i_1}h_{i_2}+ +i=1,2,,kxif(x01,x02,,x0k)hi+2!1i1=1ki2=1kxi1xi22f(x01,x02,,x0k)hi1hi2+

⋯ + 1 n ! ∑ i 1 = 1 k ∑ i 2 = 1 k ⋯ ∑ i n = 1 k ∂ n f ( x 0 1 , x 0 2 , ⋯   , x 0 k ) ∂ x i 1 ∂ x i 2 ⋯ ∂ x i n ∏ j = i 1 i n h j + R n ( x 0 1 , x 0 2 , ⋯   , x 0 k ) \cdots+\frac{1}{n!}\sum_{i_1=1}^{k}\sum_{i_2=1}^{k}\cdots\sum_{i_n=1}^{k}\frac{\partial^nf(x^1_0,x^2_0,\cdots,x^k_0)}{\partial{x^{i_1}}\partial{x^{i_2}}\cdots\partial{x^{i_n}}}\prod_{j={i_1}}^{i_n}h_j+R_n(x^1_0,x^2_0,\cdots,x^k_0) +n!1i1=1ki2=1kin=1kxi1xi2xinnf(x01,x02,,x0k)j=i1inhj+Rn(x01,x02,,x0k)

其中
R n ( x 0 1 , x 0 2 , ⋯   , x 0 k ) = 1 ( n + 1 ) ! ∑ i 1 = 1 k ∑ i 2 = 1 k ⋯ ∑ i n + 1 = 1 k ∂ n f ( x 0 1 + θ h 1 , x 0 2 + θ h 2 , ⋯   , x 0 k + θ h k ) ∂ x i 1 ∂ x i 2 ⋯ ∂ x i n ∏ j = i 1 i n + 1 h j , ( 0 < θ < 1 ) R_n(x^1_0,x^2_0,\cdots,x^k_0)=\frac{1}{(n+1)!}\sum_{i_1=1}^{k}\sum_{i_2=1}^{k}\cdots\sum_{i_{n+1}=1}^{k}\frac{\partial^nf(x^1_0+\theta h_1,x^2_0+\theta h_2,\cdots,x^k_0+\theta h_k)}{\partial{x^{i_1}}\partial{x^{i_2}}\cdots\partial{x^{i_n}}}\prod_{j={i_1}}^{i_{n+1}}h_j ,(0<\theta<1) Rn(x01,x02,,x0k)=(n+1)!1i1=1ki2=1kin+1=1kxi1xi2xinnf(x01+θh1,x02+θh2,,x0k+θhk)j=i1in+1hj,(0<θ<1)

二、常用的泰勒级数展开

基于上面的泰勒中值定理,可以导出一些常见函数的泰勒展开公式(具体推导不做展开,具体可参见同济版高数上册),然后由泰勒展开公式结合无穷级数可以得到下面的幂级数展开式:
e x = ∑ n = 0 ∞ x n n ! = 1 + x + x 2 2 ! + ⋯ + x n n ! + ⋯   , − ∞ < x < + ∞ e^x=\sum_{n=0}^\infty \frac{x^n}{n!}=1+x+\frac{x^2}{2!}+\cdots+\frac{x^n}{n!}+\cdots,-\infty<x<+\infty ex=n=0n!xn=1+x+2!x2++n!xn+,<x<+

1 1 + x = ∑ n = 0 ∞ ( − 1 ) n x n = 1 − x + x 2 − ⋯ + ( − 1 ) n x n + ⋯   , − 1 < x < 1 \frac{1}{1+x}=\sum_{n=0}^\infty(-1)^nx^n=1-x+x^2-\cdots+(-1)^nx^n+\cdots,-1<x<1 1+x1=n=0(1)nxn=1x+x2+(1)nxn+,1<x<1

l n ( 1 + x ) = ∑ n = 1 ∞ ( − 1 ) n − 1 x n n = x − x 2 2 + x 3 3 − x 4 4 + ⋯ + ( − 1 ) n − 1 x n n + ⋯   , − 1 < x ⩽ 1 ln(1+x)=\sum_{n=1}^\infty(-1)^{n-1}\frac{x^n}{n}=x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+\cdots+(-1)^{n-1}\frac{x^n}{n}+\cdots,-1<x\leqslant1 ln(1+x)=n=1(1)n1nxn=x2x2+3x34x4++(1)n1nxn+,1<x1

s i n x = ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! = x − x 3 3 ! + x 5 5 ! − x 7 7 ! + ⋯ + x 2 n + 1 ( 2 n + 1 ) ! + ⋯   , − ∞ < x < + ∞ sinx=\sum_{n=0}^\infty(-1)^n\frac{x^{2n+1}}{(2n+1)!}=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+\cdots+\frac{x^{2n+1}}{(2n+1)!}+\cdots,-\infty<x<+\infty sinx=n=0(1)n(2n+1)!x2n+1=x3!x3+5!x57!x7++(2n+1)!x2n+1+,<x<+

c o s x = ∑ n = 0 ∞ ( − 1 ) n x 2 n ( 2 n ) ! = 1 − x 2 2 ! + x 4 4 ! − x 6 6 ! + ⋯ + ( − 1 ) n x 2 n ( 2 n ) ! + ⋯   , − ∞ < x < + ∞ cosx=\sum_{n=0}^\infty(-1)^n\frac{x^{2n}}{(2n)!}=1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+\cdots+(-1)^n\frac{x^{2n}}{(2n)!}+\cdots,-\infty<x<+\infty cosx=n=0(1)n(2n)!x2n=12!x2+4!x46!x6++(1)n(2n)!x2n+,<x<+

( 1 + x ) α = 1 + α x + α ( α − 1 ) 2 ! x 2 + ⋯ + α ( α − 1 ) ⋯ ( α − n + 1 ) n ! x n + ⋯   , { x ∈ ( − 1 , 1 ) , α ⩽ − 1 x ∈ ( − 1 , 1 ] , − 1 < α < 0 x ∈ [ − 1 , 1 ] , α > 0 (1+x)^\alpha=1+\alpha x+\frac{\alpha (\alpha-1)}{2!}x^2+\cdots+\frac{\alpha (\alpha-1)\cdots (\alpha-n+1)}{n!}x^n+\cdots,\begin{cases}x\in(-1,1),\alpha\leqslant-1 \\ x\in(-1,1],-1<\alpha<0 \\ x\in[-1,1],\alpha>0\end{cases} (1+x)α=1+αx+2!α(α1)x2++n!α(α1)(αn+1)xn+,x(1,1),α1x(1,1],1<α<0x[1,1],α>0

同济版高数

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/207126.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • 数据库mdf和ldf文件怎么打开_mdf数据库文件用什么打开

    数据库mdf和ldf文件怎么打开_mdf数据库文件用什么打开AdventureWorks2008数据文件下载(含mdf和ldf文件) 下载地址:http://pan.baidu.com/s/1kTA0EbH   (26MB左右。解压之后有196MB左右,直接附加即可使用。)

  • 关于Pytorch中双向LSTM的输出表示问题

    关于Pytorch中双向LSTM的输出表示问题在使用pytorch的双向LSTM的过程中,我的大脑中蒙生出了一个疑问。双向的lstm的outputs的最后一个状态与hidden,两者之间肯定有所联系,但具体是什么样子的呢?会不会hidden状态存储的就是outputs的最后一个状态,这样的话,岂不是会导致hidden并不能表示整个序列的双向信息吗?带着这个疑问,我开始了实验。具体的实验代码,这里就不放了。直接放实验结果吧。output_size:torch.Size([14,32,100])hidden_size:torch.S

  • 安卓Activity跳转的几种方式

    安卓Activity跳转的几种方式本文转载于http://blog.sina.com.cn/s/blog_5140274d0100q4j7.html,本人仅作为学习交流之用,请大家尊重原创。第一种方式,用action来跳转。使用Action跳转,如果有一个程序的AndroidManifest.xml中的某一个Activity的IntentFilter段中定义了包含了相同的Action那么这个Intent就与这个目标Ac…

  • 差分数组技巧

    差分数组技巧一、差分数组适用题型,和技巧前缀和数组:适用于原始数组不会被修改的情况下,频繁查询某个区间的累加和差分数组:主要适⽤场景是频繁对原始数组的某个区间的元素进⾏增减(比如:给你和数组arr,然后再下标0-4之间各元素加一,2-5之间各个元素减2,求最终的原数组)差分数组技巧1.构建差分数组(diff),diff[0]=nums[0],之后diff[i]=nums[i]-nums[i-1]int[]diff=newint[nums.length];//构造差分数组diff[0]=n

  • OleDbCommand OleDbDataAdapter比较研究素材

    OleDbCommand OleDbDataAdapter比较研究素材转载地址:http://blog.sina.com.cn/s/blog_43eb83b901017fy6.html致谢!——————————————————————————————————-为什么使用OleDbCommand时OleDbConn…

  • 传感器低功耗设计_压力传感器

    传感器低功耗设计_压力传感器无线温度传感器是常见的传感器,广泛用于各种需要温度检测的场合。对于有线供电的传感器而言,可以实时监测来保证温度在限定范围内。而对于电池供电的温度传感器而言,如果过于频繁的读取传感器,则显然会消耗很多电

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号