协方差公式推导_二维正态分布cov协方差公式

协方差公式推导_二维正态分布cov协方差公式协方差公式推导cov(X,Y)=∑ni=1(Xi−X¯)(Yi−Y¯)n=E[(X−E[X])(Y−E[Y])]cov(X,Y)=\frac{\sum_{i=1}^{n}(X_i-\bar{X})(Y_i-\bar{Y})}{n}=E[(X-E[X])(Y-E[Y])]=E[XY−E[X]Y−XE[Y]+E[X]E[Y]]=E[XY-E[X]Y-XE[Y]+E[X]E[Y]]因为均值

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全家桶1年46,售后保障稳定

协方差公式推导

cov(X,Y)=ni=1(XiX¯)(YiY¯)n=E[(XE[X])(YE[Y])]




=E[XYE[X]YXE[Y]+E[X]E[Y]]



因为均值计算是线性的,即(a和b均为常数):


E[aX+bY]=aE[X]+bE[Y]



则我们有:


E[XYE[X]YXE[Y]+E[X]E[Y]]




=E[XY]E[X]E[Y]E[X]E[Y]+E[X]E[Y]




=E[XY]E[X]E[Y]

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/201120.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号