sched.h (版本4.16.7全部内容)

sched.h (版本4.16.7全部内容)/*SPDX-License-Identifier:GPL-2.0*/#ifndef_LINUX_SCHED_H#define_LINUX_SCHED_H/**Define’structtask_struct’andprovidethemainscheduler*APIs(schedule(),wakeupvariants,etc.)*/…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全家桶1年46,售后保障稳定

/* SPDX-License-Identifier: GPL-2.0 */
/* SPDX-许可证-识别符:GPL-2.0 */
#ifndef _LINUX_SCHED_H
#define _LINUX_SCHED_H
/* * Define 'struct task_struct' and provide the main scheduler * APIs (schedule(), wakeup variants, etc.) * 定义结构“struct task_struck”和主要调度(?自己的翻译,原含义好像是#进程)表 * APIs(schedule()[调度],唤醒变量等) */
#include <uapi/linux/sched.h>
#include <asm/current.h>
#include <linux/pid.h>
#include <linux/sem.h>
#include <linux/shm.h>
#include <linux/kcov.h>
#include <linux/mutex.h>
#include <linux/plist.h>
#include <linux/hrtimer.h>
#include <linux/seccomp.h>
#include <linux/nodemask.h>
#include <linux/rcupdate.h>
#include <linux/resource.h>
#include <linux/latencytop.h>
#include <linux/sched/prio.h>
#include <linux/signal_types.h>
#include <linux/mm_types_task.h>
#include <linux/task_io_accounting.h>
/* task_struct member predeclarations (sorted alphabetically): */
/* task_struct(任务_结构) 预声明成员(按字母顺序排序): */
struct audit_context;
struct backing_dev_info;
struct bio_list;
struct blk_plug;
struct cfs_rq;
struct fs_struct;
struct futex_pi_state;
struct io_context;
struct mempolicy;
struct nameidata;
struct nsproxy;
struct perf_event_context;
struct pid_namespace;
struct pipe_inode_info;
struct rcu_node;
struct reclaim_state;
struct robust_list_head;
struct sched_attr;
struct sched_param;
struct seq_file;
struct sighand_struct;
struct signal_struct;
struct task_delay_info;
struct task_group;
/* * Task state bitmask. NOTE! These bits are also * encoded in fs/proc/array.c: get_task_state(). * * We have two separate sets of flags: task->state * is about runnability, while task->exit_state are * about the task exiting. Confusing, but this way * modifying one set can't modify the other one by * mistake. */
/* Used in tsk->state: */
#define TASK_RUNNING 0x0000
#define TASK_INTERRUPTIBLE 0x0001
#define TASK_UNINTERRUPTIBLE 0x0002
#define __TASK_STOPPED 0x0004
#define __TASK_TRACED 0x0008
/* Used in tsk->exit_state: */
#define EXIT_DEAD 0x0010
#define EXIT_ZOMBIE 0x0020
#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
/* Used in tsk->state again: */
#define TASK_PARKED 0x0040
#define TASK_DEAD 0x0080
#define TASK_WAKEKILL 0x0100
#define TASK_WAKING 0x0200
#define TASK_NOLOAD 0x0400
#define TASK_NEW 0x0800
#define TASK_STATE_MAX 0x1000
/* Convenience macros for the sake of set_current_state: */
#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
/* Convenience macros for the sake of wake_up(): */
#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
/* get_task_state(): */
#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
TASK_PARKED)
#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
#define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
#define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
(task->flags & PF_FROZEN) == 0 && \
(task->state & TASK_NOLOAD) == 0)
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
#define __set_current_state(state_value) \
do {                            \
current->task_state_change = _THIS_IP_;     \
current->state = (state_value);         \
} while (0)
#define set_current_state(state_value) \
do {                            \
current->task_state_change = _THIS_IP_;     \
smp_store_mb(current->state, (state_value));    \
} while (0)
#else
/* * set_current_state() includes a barrier so that the write of current->state * is correctly serialised wrt the caller's subsequent test of whether to * actually sleep: * * for (;;) { * set_current_state(TASK_UNINTERRUPTIBLE); * if (!need_sleep) * break; * * schedule(); * } * __set_current_state(TASK_RUNNING); * * If the caller does not need such serialisation (because, for instance, the * condition test and condition change and wakeup are under the same lock) then * use __set_current_state(). * * The above is typically ordered against the wakeup, which does: * * need_sleep = false; * wake_up_state(p, TASK_UNINTERRUPTIBLE); * * Where wake_up_state() (and all other wakeup primitives) imply enough * barriers to order the store of the variable against wakeup. * * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is, * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING). * * This is obviously fine, since they both store the exact same value. * * Also see the comments of try_to_wake_up(). */
#define __set_current_state(state_value) do { current->state = (state_value); } while (0)
#define set_current_state(state_value) smp_store_mb(current->state, (state_value))
#endif
/* Task command name length: */
#define TASK_COMM_LEN 16
extern void scheduler_tick(void);
#define MAX_SCHEDULE_TIMEOUT LONG_MAX
extern long schedule_timeout(long timeout);
extern long schedule_timeout_interruptible(long timeout);
extern long schedule_timeout_killable(long timeout);
extern long schedule_timeout_uninterruptible(long timeout);
extern long schedule_timeout_idle(long timeout);
asmlinkage void schedule(void);
extern void schedule_preempt_disabled(void);
extern int __must_check io_schedule_prepare(void);
extern void io_schedule_finish(int token);
extern long io_schedule_timeout(long timeout);
extern void io_schedule(void);
/** * struct prev_cputime - snapshot of system and user cputime * @utime: time spent in user mode * @stime: time spent in system mode * @lock: protects the above two fields * * Stores previous user/system time values such that we can guarantee * monotonicity. */
struct prev_cputime {
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
u64             utime;
u64             stime;
raw_spinlock_t          lock;
#endif
};
/** * struct task_cputime - collected CPU time counts * @utime: time spent in user mode, in nanoseconds * @stime: time spent in kernel mode, in nanoseconds * @sum_exec_runtime: total time spent on the CPU, in nanoseconds * * This structure groups together three kinds of CPU time that are tracked for * threads and thread groups. Most things considering CPU time want to group * these counts together and treat all three of them in parallel. */
struct task_cputime {
u64             utime;
u64             stime;
unsigned long long      sum_exec_runtime;
};
/* Alternate field names when used on cache expirations: */
#define virt_exp utime
#define prof_exp stime
#define sched_exp sum_exec_runtime
enum vtime_state {
/* Task is sleeping or running in a CPU with VTIME inactive: */
 VTIME_INACTIVE = 0,
/* Task runs in userspace in a CPU with VTIME active: */
VTIME_USER,
/* Task runs in kernelspace in a CPU with VTIME active: */
VTIME_SYS,
};
struct vtime {
seqcount_t      seqcount;
unsigned long long  starttime;
enum vtime_state    state;
u64         utime;
u64         stime;
u64         gtime;
};
struct sched_info {
#ifdef CONFIG_SCHED_INFO
/* Cumulative counters: */
/* # of times we have run on this CPU: */
unsigned long           pcount;
/* Time spent waiting on a runqueue: */
unsigned long long      run_delay;
/* Timestamps: */
/* When did we last run on a CPU? */
unsigned long long      last_arrival;
/* When were we last queued to run? */
unsigned long long      last_queued;
#endif /* CONFIG_SCHED_INFO */
};
/* * Integer metrics need fixed point arithmetic, e.g., sched/fair * has a few: load, load_avg, util_avg, freq, and capacity. * * We define a basic fixed point arithmetic range, and then formalize * all these metrics based on that basic range. */
# define SCHED_FIXEDPOINT_SHIFT 10
# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
struct load_weight {
unsigned long           weight;
u32             inv_weight;
};
/* * The load_avg/util_avg accumulates an infinite geometric series * (see __update_load_avg() in kernel/sched/fair.c). * * [load_avg definition] * * load_avg = runnable% * scale_load_down(load) * * where runnable% is the time ratio that a sched_entity is runnable. * For cfs_rq, it is the aggregated load_avg of all runnable and * blocked sched_entities. * * load_avg may also take frequency scaling into account: * * load_avg = runnable% * scale_load_down(load) * freq% * * where freq% is the CPU frequency normalized to the highest frequency. * * [util_avg definition] * * util_avg = running% * SCHED_CAPACITY_SCALE * * where running% is the time ratio that a sched_entity is running on * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable * and blocked sched_entities. * * util_avg may also factor frequency scaling and CPU capacity scaling: * * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity% * * where freq% is the same as above, and capacity% is the CPU capacity * normalized to the greatest capacity (due to uarch differences, etc). * * N.B., the above ratios (runnable%, running%, freq%, and capacity%) * themselves are in the range of [0, 1]. To do fixed point arithmetics, * we therefore scale them to as large a range as necessary. This is for * example reflected by util_avg's SCHED_CAPACITY_SCALE. * * [Overflow issue] * * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities * with the highest load (=88761), always runnable on a single cfs_rq, * and should not overflow as the number already hits PID_MAX_LIMIT. * * For all other cases (including 32-bit kernels), struct load_weight's * weight will overflow first before we do, because: * * Max(load_avg) <= Max(load.weight) * * Then it is the load_weight's responsibility to consider overflow * issues. */
struct sched_avg {
u64             last_update_time;
u64             load_sum;
u64             runnable_load_sum;
u32             util_sum;
u32             period_contrib;
unsigned long           load_avg;
unsigned long           runnable_load_avg;
unsigned long           util_avg;
};
struct sched_statistics {
#ifdef CONFIG_SCHEDSTATS
u64             wait_start;
u64             wait_max;
u64             wait_count;
u64             wait_sum;
u64             iowait_count;
u64             iowait_sum;
u64             sleep_start;
u64             sleep_max;
s64             sum_sleep_runtime;
u64             block_start;
u64             block_max;
u64             exec_max;
u64             slice_max;
u64             nr_migrations_cold;
u64             nr_failed_migrations_affine;
u64             nr_failed_migrations_running;
u64             nr_failed_migrations_hot;
u64             nr_forced_migrations;
u64             nr_wakeups;
u64             nr_wakeups_sync;
u64             nr_wakeups_migrate;
u64             nr_wakeups_local;
u64             nr_wakeups_remote;
u64             nr_wakeups_affine;
u64             nr_wakeups_affine_attempts;
u64             nr_wakeups_passive;
u64             nr_wakeups_idle;
#endif
};
struct sched_entity {
/* For load-balancing: */
struct load_weight      load;
unsigned long           runnable_weight;
struct rb_node          run_node;
struct list_head        group_node;
unsigned int            on_rq;
u64             exec_start;
u64             sum_exec_runtime;
u64             vruntime;
u64             prev_sum_exec_runtime;
u64             nr_migrations;
struct sched_statistics     statistics;
#ifdef CONFIG_FAIR_GROUP_SCHED
int             depth;
struct sched_entity     *parent;
/* rq on which this entity is (to be) queued: */
struct cfs_rq           *cfs_rq;
/* rq "owned" by this entity/group: */
struct cfs_rq           *my_q;
#endif
#ifdef CONFIG_SMP
/* * Per entity load average tracking. * * Put into separate cache line so it does not * collide with read-mostly values above. */
struct sched_avg        avg ____cacheline_aligned_in_smp;
#endif
};
struct sched_rt_entity {
struct list_head        run_list;
unsigned long           timeout;
unsigned long           watchdog_stamp;
unsigned int            time_slice;
unsigned short          on_rq;
unsigned short          on_list;
struct sched_rt_entity      *back;
#ifdef CONFIG_RT_GROUP_SCHED
struct sched_rt_entity      *parent;
/* rq on which this entity is (to be) queued: */
struct rt_rq            *rt_rq;
/* rq "owned" by this entity/group: */
struct rt_rq            *my_q;
#endif
} __randomize_layout;
struct sched_dl_entity {
struct rb_node          rb_node;
/* * Original scheduling parameters. Copied here from sched_attr * during sched_setattr(), they will remain the same until * the next sched_setattr(). */
u64             dl_runtime; /* Maximum runtime for each instance */
u64             dl_deadline;    /* Relative deadline of each instance */
u64             dl_period;  /* Separation of two instances (period) */
u64             dl_bw;      /* dl_runtime / dl_period */
u64             dl_density; /* dl_runtime / dl_deadline */
/* * Actual scheduling parameters. Initialized with the values above, * they are continously updated during task execution. Note that * the remaining runtime could be < 0 in case we are in overrun. */
s64             runtime;    /* Remaining runtime for this instance */
u64             deadline;   /* Absolute deadline for this instance */
unsigned int            flags;      /* Specifying the scheduler behaviour */
/* * Some bool flags: * * @dl_throttled tells if we exhausted the runtime. If so, the * task has to wait for a replenishment to be performed at the * next firing of dl_timer. * * @dl_boosted tells if we are boosted due to DI. If so we are * outside bandwidth enforcement mechanism (but only until we * exit the critical section); * * @dl_yielded tells if task gave up the CPU before consuming * all its available runtime during the last job. * * @dl_non_contending tells if the task is inactive while still * contributing to the active utilization. In other words, it * indicates if the inactive timer has been armed and its handler * has not been executed yet. This flag is useful to avoid race * conditions between the inactive timer handler and the wakeup * code. * * @dl_overrun tells if the task asked to be informed about runtime * overruns. */
unsigned int            dl_throttled      : 1;
unsigned int            dl_boosted        : 1;
unsigned int            dl_yielded        : 1;
unsigned int            dl_non_contending : 1;
unsigned int            dl_overrun    : 1;
/* * Bandwidth enforcement timer. Each -deadline task has its * own bandwidth to be enforced, thus we need one timer per task. */
struct hrtimer          dl_timer;
/* * Inactive timer, responsible for decreasing the active utilization * at the "0-lag time". When a -deadline task blocks, it contributes * to GRUB's active utilization until the "0-lag time", hence a * timer is needed to decrease the active utilization at the correct * time. */
struct hrtimer inactive_timer;
};
union rcu_special {
struct {
u8          blocked;
u8          need_qs;
u8          exp_need_qs;
/* Otherwise the compiler can store garbage here: */
u8          pad;
} b; /* Bits. */
u32 s; /* Set of bits. */
};
enum perf_event_task_context {
perf_invalid_context = -1,
perf_hw_context = 0,
perf_sw_context,
perf_nr_task_contexts,
};
struct wake_q_node {
struct wake_q_node *next;
};
struct task_struct {
#ifdef CONFIG_THREAD_INFO_IN_TASK
/* * For reasons of header soup (see current_thread_info()), this * must be the first element of task_struct. * 由于头的困难(见 current_thread_info()【翻译:现在的线程信息】 * [详见thread_indo.h-86](https://blog.csdn.net/u011288483/article/details/80247067)), * 这必须是task_struct()的第一个元素。 */
struct thread_info      thread_info;
#endif
/* -1 unrunnable, 0 runnable, >0 stopped: */
/* 这个是进程的运行时状态,-1代表不可运行,0代表可运行,>0代表已停止 */
volatile long           state;
/* * This begins the randomizable portion of task_struct. Only * scheduling-critical items should be added above here. */
randomized_struct_fields_start
void                *stack;
atomic_t            usage;
/* Per task flags (PF_*), defined further below: */
unsigned int            flags;
unsigned int            ptrace;
#ifdef CONFIG_SMP
struct llist_node       wake_entry;
int             on_cpu;
#ifdef CONFIG_THREAD_INFO_IN_TASK
/* Current CPU: */
unsigned int            cpu;
#endif
unsigned int            wakee_flips;
unsigned long           wakee_flip_decay_ts;
struct task_struct      *last_wakee;
/* * recent_used_cpu is initially set as the last CPU used by a task * that wakes affine another task. Waker/wakee relationships can * push tasks around a CPU where each wakeup moves to the next one. * Tracking a recently used CPU allows a quick search for a recently * used CPU that may be idle. */
int             recent_used_cpu;
int             wake_cpu;
#endif
int             on_rq;
int             prio;
int             static_prio;
int             normal_prio;
unsigned int            rt_priority;
const struct sched_class    *sched_class;
struct sched_entity     se;
struct sched_rt_entity      rt;
#ifdef CONFIG_CGROUP_SCHED
struct task_group       *sched_task_group;
#endif
struct sched_dl_entity      dl;
#ifdef CONFIG_PREEMPT_NOTIFIERS
/* List of struct preempt_notifier: */
struct hlist_head       preempt_notifiers;
#endif
#ifdef CONFIG_BLK_DEV_IO_TRACE
unsigned int            btrace_seq;
#endif
unsigned int            policy;
int             nr_cpus_allowed;
cpumask_t           cpus_allowed;
#ifdef CONFIG_PREEMPT_RCU
int             rcu_read_lock_nesting;
union rcu_special       rcu_read_unlock_special;
struct list_head        rcu_node_entry;
struct rcu_node         *rcu_blocked_node;
#endif /* #ifdef CONFIG_PREEMPT_RCU */
#ifdef CONFIG_TASKS_RCU
unsigned long           rcu_tasks_nvcsw;
u8              rcu_tasks_holdout;
u8              rcu_tasks_idx;
int             rcu_tasks_idle_cpu;
struct list_head        rcu_tasks_holdout_list;
#endif /* #ifdef CONFIG_TASKS_RCU */
struct sched_info       sched_info;
struct list_head        tasks;
#ifdef CONFIG_SMP
struct plist_node       pushable_tasks;
struct rb_node          pushable_dl_tasks;
#endif
struct mm_struct        *mm;
struct mm_struct        *active_mm;
/* Per-thread vma caching: */
struct vmacache         vmacache;
#ifdef SPLIT_RSS_COUNTING
struct task_rss_stat        rss_stat;
#endif
int             exit_state;
int             exit_code;
int             exit_signal;
/* The signal sent when the parent dies: */
int             pdeath_signal;
/* JOBCTL_*, siglock protected: */
unsigned long           jobctl;
/* Used for emulating ABI behavior of previous Linux versions: */
unsigned int            personality;
/* Scheduler bits, serialized by scheduler locks: */
unsigned            sched_reset_on_fork:1;
unsigned            sched_contributes_to_load:1;
unsigned            sched_migrated:1;
unsigned            sched_remote_wakeup:1;
/* Force alignment to the next boundary: */
unsigned            :0;
/* Unserialized, strictly 'current' */
/* Bit to tell LSMs we're in execve(): */
unsigned            in_execve:1;
unsigned            in_iowait:1;
#ifndef TIF_RESTORE_SIGMASK
unsigned            restore_sigmask:1;
#endif
#ifdef CONFIG_MEMCG
unsigned            memcg_may_oom:1;
#ifndef CONFIG_SLOB
unsigned            memcg_kmem_skip_account:1;
#endif
#endif
#ifdef CONFIG_COMPAT_BRK
unsigned            brk_randomized:1;
#endif
#ifdef CONFIG_CGROUPS
/* disallow userland-initiated cgroup migration */
unsigned            no_cgroup_migration:1;
#endif
unsigned long           atomic_flags; /* Flags requiring atomic access. */
struct restart_block        restart_block;
pid_t               pid;
pid_t               tgid;
#ifdef CONFIG_CC_STACKPROTECTOR
/* Canary value for the -fstack-protector GCC feature: */
unsigned long           stack_canary;
#endif
/* * Pointers to the (original) parent process, youngest child, younger sibling, * older sibling, respectively. (p->father can be replaced with * p->real_parent->pid) */
/* Real parent process: */
struct task_struct __rcu    *real_parent;
/* Recipient of SIGCHLD, wait4() reports: */
struct task_struct __rcu    *parent;
/* * Children/sibling form the list of natural children: */
struct list_head        children;
struct list_head        sibling;
struct task_struct      *group_leader;
/* * 'ptraced' is the list of tasks this task is using ptrace() on. * * This includes both natural children and PTRACE_ATTACH targets. * 'ptrace_entry' is this task's link on the p->parent->ptraced list. */
struct list_head        ptraced;
struct list_head        ptrace_entry;
/* PID/PID hash table linkage. */
struct pid_link         pids[PIDTYPE_MAX];
struct list_head        thread_group;
struct list_head        thread_node;
struct completion       *vfork_done;
/* CLONE_CHILD_SETTID: */
int __user          *set_child_tid;
/* CLONE_CHILD_CLEARTID: */
int __user          *clear_child_tid;
u64             utime;
u64             stime;
#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
u64             utimescaled;
u64             stimescaled;
#endif
u64             gtime;
struct prev_cputime     prev_cputime;
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
struct vtime            vtime;
#endif
#ifdef CONFIG_NO_HZ_FULL
atomic_t            tick_dep_mask;
#endif
/* Context switch counts: */
unsigned long           nvcsw;
unsigned long           nivcsw;
/* Monotonic time in nsecs: */
u64             start_time;
/* Boot based time in nsecs: */
u64             real_start_time;
/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
unsigned long           min_flt;
unsigned long           maj_flt;
#ifdef CONFIG_POSIX_TIMERS
struct task_cputime     cputime_expires;
struct list_head        cpu_timers[3];
#endif
/* Process credentials: */
/* Tracer's credentials at attach: */
const struct cred __rcu     *ptracer_cred;
/* Objective and real subjective task credentials (COW): */
const struct cred __rcu     *real_cred;
/* Effective (overridable) subjective task credentials (COW): */
const struct cred __rcu     *cred;
/* * executable name, excluding path. * * - normally initialized setup_new_exec() * - access it with [gs]et_task_comm() * - lock it with task_lock() */
char                comm[TASK_COMM_LEN];
struct nameidata        *nameidata;
#ifdef CONFIG_SYSVIPC
struct sysv_sem         sysvsem;
struct sysv_shm         sysvshm;
#endif
#ifdef CONFIG_DETECT_HUNG_TASK
unsigned long           last_switch_count;
#endif
/* Filesystem information: */
struct fs_struct        *fs;
/* Open file information: */
struct files_struct     *files;
/* Namespaces: */
struct nsproxy          *nsproxy;
/* Signal handlers: */
struct signal_struct        *signal;
struct sighand_struct       *sighand;
sigset_t            blocked;
sigset_t            real_blocked;
/* Restored if set_restore_sigmask() was used: */
sigset_t            saved_sigmask;
struct sigpending       pending;
unsigned long           sas_ss_sp;
size_t              sas_ss_size;
unsigned int            sas_ss_flags;
struct callback_head        *task_works;
struct audit_context        *audit_context;
#ifdef CONFIG_AUDITSYSCALL
kuid_t              loginuid;
unsigned int            sessionid;
#endif
struct seccomp          seccomp;
/* Thread group tracking: */
u32             parent_exec_id;
u32             self_exec_id;
/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
spinlock_t          alloc_lock;
/* Protection of the PI data structures: */
raw_spinlock_t          pi_lock;
struct wake_q_node      wake_q;
#ifdef CONFIG_RT_MUTEXES
/* PI waiters blocked on a rt_mutex held by this task: */
struct rb_root_cached       pi_waiters;
/* Updated under owner's pi_lock and rq lock */
struct task_struct      *pi_top_task;
/* Deadlock detection and priority inheritance handling: */
struct rt_mutex_waiter      *pi_blocked_on;
#endif
#ifdef CONFIG_DEBUG_MUTEXES
/* Mutex deadlock detection: */
struct mutex_waiter     *blocked_on;
#endif
#ifdef CONFIG_TRACE_IRQFLAGS
unsigned int            irq_events;
unsigned long           hardirq_enable_ip;
unsigned long           hardirq_disable_ip;
unsigned int            hardirq_enable_event;
unsigned int            hardirq_disable_event;
int             hardirqs_enabled;
int             hardirq_context;
unsigned long           softirq_disable_ip;
unsigned long           softirq_enable_ip;
unsigned int            softirq_disable_event;
unsigned int            softirq_enable_event;
int             softirqs_enabled;
int             softirq_context;
#endif
#ifdef CONFIG_LOCKDEP
# define MAX_LOCK_DEPTH 48UL
u64             curr_chain_key;
int             lockdep_depth;
unsigned int            lockdep_recursion;
struct held_lock        held_locks[MAX_LOCK_DEPTH];
#endif
#ifdef CONFIG_UBSAN
unsigned int            in_ubsan;
#endif
/* Journalling filesystem info: */
void                *journal_info;
/* Stacked block device info: */
struct bio_list         *bio_list;
#ifdef CONFIG_BLOCK
/* Stack plugging: */
struct blk_plug         *plug;
#endif
/* VM state: */
struct reclaim_state        *reclaim_state;
struct backing_dev_info     *backing_dev_info;
struct io_context       *io_context;
/* Ptrace state: */
unsigned long           ptrace_message;
siginfo_t           *last_siginfo;
struct task_io_accounting   ioac;
#ifdef CONFIG_TASK_XACCT
/* Accumulated RSS usage: */
u64             acct_rss_mem1;
/* Accumulated virtual memory usage: */
u64             acct_vm_mem1;
/* stime + utime since last update: */
u64             acct_timexpd;
#endif
#ifdef CONFIG_CPUSETS
/* Protected by ->alloc_lock: */
nodemask_t          mems_allowed;
/* Seqence number to catch updates: */
seqcount_t          mems_allowed_seq;
int             cpuset_mem_spread_rotor;
int             cpuset_slab_spread_rotor;
#endif
#ifdef CONFIG_CGROUPS
/* Control Group info protected by css_set_lock: */
struct css_set __rcu        *cgroups;
/* cg_list protected by css_set_lock and tsk->alloc_lock: */
struct list_head        cg_list;
#endif
#ifdef CONFIG_INTEL_RDT
u32             closid;
u32             rmid;
#endif
#ifdef CONFIG_FUTEX
struct robust_list_head __user  *robust_list;
#ifdef CONFIG_COMPAT
struct compat_robust_list_head __user *compat_robust_list;
#endif
struct list_head        pi_state_list;
struct futex_pi_state       *pi_state_cache;
#endif
#ifdef CONFIG_PERF_EVENTS
struct perf_event_context   *perf_event_ctxp[perf_nr_task_contexts];
struct mutex            perf_event_mutex;
struct list_head        perf_event_list;
#endif
#ifdef CONFIG_DEBUG_PREEMPT
unsigned long           preempt_disable_ip;
#endif
#ifdef CONFIG_NUMA
/* Protected by alloc_lock: */
struct mempolicy        *mempolicy;
short               il_prev;
short               pref_node_fork;
#endif
#ifdef CONFIG_NUMA_BALANCING
int             numa_scan_seq;
unsigned int            numa_scan_period;
unsigned int            numa_scan_period_max;
int             numa_preferred_nid;
unsigned long           numa_migrate_retry;
/* Migration stamp: */
u64             node_stamp;
u64             last_task_numa_placement;
u64             last_sum_exec_runtime;
struct callback_head        numa_work;
struct list_head        numa_entry;
struct numa_group       *numa_group;
/* * numa_faults is an array split into four regions: * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer * in this precise order. * * faults_memory: Exponential decaying average of faults on a per-node * basis. Scheduling placement decisions are made based on these * counts. The values remain static for the duration of a PTE scan. * faults_cpu: Track the nodes the process was running on when a NUMA * hinting fault was incurred. * faults_memory_buffer and faults_cpu_buffer: Record faults per node * during the current scan window. When the scan completes, the counts * in faults_memory and faults_cpu decay and these values are copied. */
unsigned long           *numa_faults;
unsigned long           total_numa_faults;
/* * numa_faults_locality tracks if faults recorded during the last * scan window were remote/local or failed to migrate. The task scan * period is adapted based on the locality of the faults with different * weights depending on whether they were shared or private faults */
unsigned long           numa_faults_locality[3];
unsigned long           numa_pages_migrated;
#endif /* CONFIG_NUMA_BALANCING */
struct tlbflush_unmap_batch tlb_ubc;
struct rcu_head         rcu;
/* Cache last used pipe for splice(): */
struct pipe_inode_info      *splice_pipe;
struct page_frag        task_frag;
#ifdef CONFIG_TASK_DELAY_ACCT
struct task_delay_info      *delays;
#endif
#ifdef CONFIG_FAULT_INJECTION
int             make_it_fail;
unsigned int            fail_nth;
#endif
/* * When (nr_dirtied >= nr_dirtied_pause), it's time to call * balance_dirty_pages() for a dirty throttling pause: */
int             nr_dirtied;
int             nr_dirtied_pause;
/* Start of a write-and-pause period: */
unsigned long           dirty_paused_when;
#ifdef CONFIG_LATENCYTOP
int             latency_record_count;
struct latency_record       latency_record[LT_SAVECOUNT];
#endif
/* * Time slack values; these are used to round up poll() and * select() etc timeout values. These are in nanoseconds. */
u64             timer_slack_ns;
u64             default_timer_slack_ns;
#ifdef CONFIG_KASAN
unsigned int            kasan_depth;
#endif
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
/* Index of current stored address in ret_stack: */
int             curr_ret_stack;
/* Stack of return addresses for return function tracing: */
struct ftrace_ret_stack     *ret_stack;
/* Timestamp for last schedule: */
unsigned long long      ftrace_timestamp;
/* * Number of functions that haven't been traced * because of depth overrun: */
atomic_t            trace_overrun;
/* Pause tracing: */
atomic_t            tracing_graph_pause;
#endif
#ifdef CONFIG_TRACING
/* State flags for use by tracers: */
unsigned long           trace;
/* Bitmask and counter of trace recursion: */
unsigned long           trace_recursion;
#endif /* CONFIG_TRACING */
#ifdef CONFIG_KCOV
/* Coverage collection mode enabled for this task (0 if disabled): */
enum kcov_mode          kcov_mode;
/* Size of the kcov_area: */
unsigned int            kcov_size;
/* Buffer for coverage collection: */
void                *kcov_area;
/* KCOV descriptor wired with this task or NULL: */
struct kcov         *kcov;
#endif
#ifdef CONFIG_MEMCG
struct mem_cgroup       *memcg_in_oom;
gfp_t               memcg_oom_gfp_mask;
int             memcg_oom_order;
/* Number of pages to reclaim on returning to userland: */
unsigned int            memcg_nr_pages_over_high;
#endif
#ifdef CONFIG_UPROBES
struct uprobe_task      *utask;
#endif
#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
unsigned int            sequential_io;
unsigned int            sequential_io_avg;
#endif
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
unsigned long           task_state_change;
#endif
int             pagefault_disabled;
#ifdef CONFIG_MMU
struct task_struct      *oom_reaper_list;
#endif
#ifdef CONFIG_VMAP_STACK
struct vm_struct        *stack_vm_area;
#endif
#ifdef CONFIG_THREAD_INFO_IN_TASK
/* A live task holds one reference: */
atomic_t            stack_refcount;
#endif
#ifdef CONFIG_LIVEPATCH
int patch_state;
#endif
#ifdef CONFIG_SECURITY
/* Used by LSM modules for access restriction: */
void                *security;
#endif
/* * New fields for task_struct should be added above here, so that * they are included in the randomized portion of task_struct. */
randomized_struct_fields_end
/* CPU-specific state of this task: */
struct thread_struct        thread;
/* * WARNING: on x86, 'thread_struct' contains a variable-sized * structure. It *MUST* be at the end of 'task_struct'. * * Do not put anything below here! */
};
static inline struct pid *task_pid(struct task_struct *task)
{
return task->pids[PIDTYPE_PID].pid;
}
static inline struct pid *task_tgid(struct task_struct *task)
{
return task->group_leader->pids[PIDTYPE_PID].pid;
}
/* * Without tasklist or RCU lock it is not safe to dereference * the result of task_pgrp/task_session even if task == current, * we can race with another thread doing sys_setsid/sys_setpgid. */
static inline struct pid *task_pgrp(struct task_struct *task)
{
return task->group_leader->pids[PIDTYPE_PGID].pid;
}
static inline struct pid *task_session(struct task_struct *task)
{
return task->group_leader->pids[PIDTYPE_SID].pid;
}
/* * the helpers to get the task's different pids as they are seen * from various namespaces * * task_xid_nr() : global id, i.e. the id seen from the init namespace; * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of * current. * task_xid_nr_ns() : id seen from the ns specified; * * see also pid_nr() etc in include/linux/pid.h */
pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
static inline pid_t task_pid_nr(struct task_struct *tsk)
{
return tsk->pid;
}
static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
{
return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
}
static inline pid_t task_pid_vnr(struct task_struct *tsk)
{
return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
}
static inline pid_t task_tgid_nr(struct task_struct *tsk)
{
return tsk->tgid;
}
/** * pid_alive - check that a task structure is not stale * @p: Task structure to be checked. * * Test if a process is not yet dead (at most zombie state) * If pid_alive fails, then pointers within the task structure * can be stale and must not be dereferenced. * * Return: 1 if the process is alive. 0 otherwise. */
static inline int pid_alive(const struct task_struct *p)
{
return p->pids[PIDTYPE_PID].pid != NULL;
}
static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
{
return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
}
static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
{
return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
}
static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
{
return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
}
static inline pid_t task_session_vnr(struct task_struct *tsk)
{
return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
}
static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
{
return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, ns);
}
static inline pid_t task_tgid_vnr(struct task_struct *tsk)
{
return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, NULL);
}
static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
{
pid_t pid = 0;
rcu_read_lock();
if (pid_alive(tsk))
pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
rcu_read_unlock();
return pid;
}
static inline pid_t task_ppid_nr(const struct task_struct *tsk)
{
return task_ppid_nr_ns(tsk, &init_pid_ns);
}
/* Obsolete, do not use: */
static inline pid_t task_pgrp_nr(struct task_struct *tsk)
{
return task_pgrp_nr_ns(tsk, &init_pid_ns);
}
#define TASK_REPORT_IDLE (TASK_REPORT + 1)
#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
static inline unsigned int task_state_index(struct task_struct *tsk)
{
unsigned int tsk_state = READ_ONCE(tsk->state);
unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
if (tsk_state == TASK_IDLE)
state = TASK_REPORT_IDLE;
return fls(state);
}
static inline char task_index_to_char(unsigned int state)
{
static const char state_char[] = "RSDTtXZPI";
BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
return state_char[state];
}
static inline char task_state_to_char(struct task_struct *tsk)
{
return task_index_to_char(task_state_index(tsk));
}
/** * is_global_init - check if a task structure is init. Since init * is free to have sub-threads we need to check tgid. * @tsk: Task structure to be checked. * * Check if a task structure is the first user space task the kernel created. * * Return: 1 if the task structure is init. 0 otherwise. */
static inline int is_global_init(struct task_struct *tsk)
{
return task_tgid_nr(tsk) == 1;
}
extern struct pid *cad_pid;
/* * Per process flags */
#define PF_IDLE 0x00000002 /* I am an IDLE thread */
#define PF_EXITING 0x00000004 /* Getting shut down */
#define PF_EXITPIDONE 0x00000008 /* PI exit done on shut down */
#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
#define PF_DUMPCORE 0x00000200 /* Dumped core */
#define PF_SIGNALED 0x00000400 /* Killed by a signal */
#define PF_MEMALLOC 0x00000800 /* Allocating memory */
#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
#define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
#define PF_FROZEN 0x00010000 /* Frozen for system suspend */
#define PF_KSWAPD 0x00020000 /* I am kswapd */
#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
/* * Only the _current_ task can read/write to tsk->flags, but other * tasks can access tsk->flags in readonly mode for example * with tsk_used_math (like during threaded core dumping). * There is however an exception to this rule during ptrace * or during fork: the ptracer task is allowed to write to the * child->flags of its traced child (same goes for fork, the parent * can write to the child->flags), because we're guaranteed the * child is not running and in turn not changing child->flags * at the same time the parent does it. */
#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
#define clear_used_math() clear_stopped_child_used_math(current)
#define set_used_math() set_stopped_child_used_math(current)
#define conditional_stopped_child_used_math(condition, child) \
do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
#define copy_to_stopped_child_used_math(child) \
do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
#define used_math() tsk_used_math(current)
static inline bool is_percpu_thread(void)
{
#ifdef CONFIG_SMP
return (current->flags & PF_NO_SETAFFINITY) &&
(current->nr_cpus_allowed  == 1);
#else
return true;
#endif
}
/* Per-process atomic flags. */
#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
#define TASK_PFA_TEST(name, func) \
static inline bool task_##func(struct task_struct *p)       \
{ return test_bit(PFA_##name, &p->atomic_flags); }
#define TASK_PFA_SET(name, func) \
static inline void task_set_##func(struct task_struct *p)   \
{ set_bit(PFA_##name, &p->atomic_flags); }
#define TASK_PFA_CLEAR(name, func) \
static inline void task_clear_##func(struct task_struct *p) \
{ clear_bit(PFA_##name, &p->atomic_flags); }
TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
TASK_PFA_TEST(SPREAD_PAGE, spread_page)
TASK_PFA_SET(SPREAD_PAGE, spread_page)
TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
TASK_PFA_SET(SPREAD_SLAB, spread_slab)
TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
static inline void
current_restore_flags(unsigned long orig_flags, unsigned long flags)
{
current->flags &= ~flags;
current->flags |= orig_flags & flags;
}
extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
#ifdef CONFIG_SMP
extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
#else
static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
}
static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
{
if (!cpumask_test_cpu(0, new_mask))
return -EINVAL;
return 0;
}
#endif
#ifndef cpu_relax_yield
#define cpu_relax_yield() cpu_relax()
#endif
extern int yield_to(struct task_struct *p, bool preempt);
extern void set_user_nice(struct task_struct *p, long nice);
extern int task_prio(const struct task_struct *p);
/** * task_nice - return the nice value of a given task. * @p: the task in question. * * Return: The nice value [ -20 ... 0 ... 19 ]. */
static inline int task_nice(const struct task_struct *p)
{
return PRIO_TO_NICE((p)->static_prio);
}
extern int can_nice(const struct task_struct *p, const int nice);
extern int task_curr(const struct task_struct *p);
extern int idle_cpu(int cpu);
extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
extern int sched_setattr(struct task_struct *, const struct sched_attr *);
extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
extern struct task_struct *idle_task(int cpu);
/** * is_idle_task - is the specified task an idle task? * @p: the task in question. * * Return: 1 if @p is an idle task. 0 otherwise. */
static inline bool is_idle_task(const struct task_struct *p)
{
return !!(p->flags & PF_IDLE);
}
extern struct task_struct *curr_task(int cpu);
extern void ia64_set_curr_task(int cpu, struct task_struct *p);
void yield(void);
union thread_union {
#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
struct task_struct task;
#endif
#ifndef CONFIG_THREAD_INFO_IN_TASK
struct thread_info thread_info;
#endif
unsigned long stack[THREAD_SIZE/sizeof(long)];
};
#ifndef CONFIG_THREAD_INFO_IN_TASK
extern struct thread_info init_thread_info;
#endif
extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
#ifdef CONFIG_THREAD_INFO_IN_TASK
static inline struct thread_info *task_thread_info(struct task_struct *task)
{
return &task->thread_info;
}
#elif !defined(__HAVE_THREAD_FUNCTIONS)
# define task_thread_info(task) ((struct thread_info *)(task)->stack)
#endif
/* * find a task by one of its numerical ids * * find_task_by_pid_ns(): * finds a task by its pid in the specified namespace * find_task_by_vpid(): * finds a task by its virtual pid * * see also find_vpid() etc in include/linux/pid.h */
extern struct task_struct *find_task_by_vpid(pid_t nr);
extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
/* * find a task by its virtual pid and get the task struct */
extern struct task_struct *find_get_task_by_vpid(pid_t nr);
extern int wake_up_state(struct task_struct *tsk, unsigned int state);
extern int wake_up_process(struct task_struct *tsk);
extern void wake_up_new_task(struct task_struct *tsk);
#ifdef CONFIG_SMP
extern void kick_process(struct task_struct *tsk);
#else
static inline void kick_process(struct task_struct *tsk) { }
#endif
extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
static inline void set_task_comm(struct task_struct *tsk, const char *from)
{
__set_task_comm(tsk, from, false);
}
extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
#define get_task_comm(buf, tsk) ({ \
BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
__get_task_comm(buf, sizeof(buf), tsk);     \
})
#ifdef CONFIG_SMP
void scheduler_ipi(void);
extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
#else
static inline void scheduler_ipi(void) { }
static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
{
return 1;
}
#endif
/* * Set thread flags in other task's structures. * See asm/thread_info.h for TIF_xxxx flags available: */
static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
{
set_ti_thread_flag(task_thread_info(tsk), flag);
}
static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
{
clear_ti_thread_flag(task_thread_info(tsk), flag);
}
static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
{
return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
}
static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
{
return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
}
static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
{
return test_ti_thread_flag(task_thread_info(tsk), flag);
}
static inline void set_tsk_need_resched(struct task_struct *tsk)
{
set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
}
static inline void clear_tsk_need_resched(struct task_struct *tsk)
{
clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
}
static inline int test_tsk_need_resched(struct task_struct *tsk)
{
return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
}
/* * cond_resched() and cond_resched_lock(): latency reduction via * explicit rescheduling in places that are safe. The return * value indicates whether a reschedule was done in fact. * cond_resched_lock() will drop the spinlock before scheduling, * cond_resched_softirq() will enable bhs before scheduling. */
#ifndef CONFIG_PREEMPT
extern int _cond_resched(void);
#else
static inline int _cond_resched(void) { return 0; }
#endif
#define cond_resched() ({ \
___might_sleep(__FILE__, __LINE__, 0);  \
_cond_resched();            \
})
extern int __cond_resched_lock(spinlock_t *lock);
#define cond_resched_lock(lock) ({ \
___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
__cond_resched_lock(lock);              \
})
extern int __cond_resched_softirq(void);
#define cond_resched_softirq() ({ \
___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
__cond_resched_softirq();                   \
})
static inline void cond_resched_rcu(void)
{
#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
rcu_read_unlock();
cond_resched();
rcu_read_lock();
#endif
}
/* * Does a critical section need to be broken due to another * task waiting?: (technically does not depend on CONFIG_PREEMPT, * but a general need for low latency) */
static inline int spin_needbreak(spinlock_t *lock)
{
#ifdef CONFIG_PREEMPT
return spin_is_contended(lock);
#else
return 0;
#endif
}
static __always_inline bool need_resched(void)
{
return unlikely(tif_need_resched());
}
/* * Wrappers for p->thread_info->cpu access. No-op on UP. */
#ifdef CONFIG_SMP
static inline unsigned int task_cpu(const struct task_struct *p)
{
#ifdef CONFIG_THREAD_INFO_IN_TASK
return p->cpu;
#else
return task_thread_info(p)->cpu;
#endif
}
extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
#else
static inline unsigned int task_cpu(const struct task_struct *p)
{
return 0;
}
static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
{
}
#endif /* CONFIG_SMP */
/* * In order to reduce various lock holder preemption latencies provide an * interface to see if a vCPU is currently running or not. * * This allows us to terminate optimistic spin loops and block, analogous to * the native optimistic spin heuristic of testing if the lock owner task is * running or not. */
#ifndef vcpu_is_preempted
# define vcpu_is_preempted(cpu) false
#endif
extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
#ifndef TASK_SIZE_OF
#define TASK_SIZE_OF(tsk) TASK_SIZE
#endif
#endif

Jetbrains全家桶1年46,售后保障稳定

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/201095.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • CSRF攻击与防御(写得非常好)「建议收藏」

    转载地址:http://www.phpddt.com/reprint/csrf.htmlCSRF概念:CSRF跨站点请求伪造(Cross—SiteRequestForgery),跟XSS攻击一样,存在巨大的危害性,你可以这样来理解:攻击者盗用了你的身份,以你的名义发送恶意请求,对服务器来说这个请求是完全合法的,但是却完成了攻击者所期望的一个操作,

  • layoutSubviews触发问题

    layoutSubviews触发问题layoutSubviews在以下情况下会被调用: 1、init初始化不会触发layoutSubviews 2、addSubview会触发layoutSubviews 3、设置view的Frame会触发layoutSubviews,当然前提是frame的值设置前后发生了变化 4、滚动一个UIScrollView会触发layoutSubviews 5、旋转Screen会触发父UIView上的layo…

  • phpstorm激活码[最新免费获取]

    (phpstorm激活码)最近有小伙伴私信我,问我这边有没有免费的intellijIdea的激活码,然后我将全栈君台教程分享给他了。激活成功之后他一直表示感谢,哈哈~IntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,下面是详细链接哦~https://javaforall.cn/100143.html…

  • 2年开发经验总结的java面试题(有完整答案)

    2年开发经验总结的java面试题(有完整答案)一、Java基础部分1、Java基本数据类型有八种:四种整数类型(byte、short、int、long),两种浮点数类型(double、float)一种字符类型char,一种布尔类型Boolean记忆:8位:Byte(字节型)16位:short(短整型)、char(字符型)32位:int(整…

  • RF、GBDT、XGBoost面试级整理

    RF、GBDT、XGBoost面试级整理由于本文是基于面试整理,因此不会过多的关注公式和推导,如果希望详细了解算法内容,敬请期待后文。    RF、GBDT和XGBoost都属于集成学习(EnsembleLearning),集成学习的目的是通过结合多个基学习器的预测结果来改善单个学习器的泛化能力和鲁棒性。  根据个体学习器的生成方式,目前的集成学习方法大致分为两大类:即个体学习器之间存在强依赖关系、必须串行生成的序列化方法

  • 使用批处理杀进程[通俗易懂]

    使用批处理杀进程[通俗易懂]在工作中经常会有发送远端命令来重启应用或是修改项目的情况。有时候,由于权限问题以及便捷性,并不总是能够远程控制,这时候需要发送一些远程命令来执行操作。使用apache搭建一个服务器,基于访问html来发送一些命令,可以远程重启服务器。但是存在一个问题,比如,架设html的服务器在执行批处理命令的时候,执行到这句:call“D:/tomcat/bin/shutdown.bat”这时候,并没

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号