sched.h (版本4.16.7全部内容)

sched.h (版本4.16.7全部内容)/*SPDX-License-Identifier:GPL-2.0*/#ifndef_LINUX_SCHED_H#define_LINUX_SCHED_H/**Define’structtask_struct’andprovidethemainscheduler*APIs(schedule(),wakeupvariants,etc.)*/…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全家桶1年46,售后保障稳定

/* SPDX-License-Identifier: GPL-2.0 */
/* SPDX-许可证-识别符:GPL-2.0 */
#ifndef _LINUX_SCHED_H
#define _LINUX_SCHED_H

/* * Define 'struct task_struct' and provide the main scheduler * APIs (schedule(), wakeup variants, etc.) * 定义结构“struct task_struck”和主要调度(?自己的翻译,原含义好像是#进程)表 * APIs(schedule()[调度],唤醒变量等) */

#include <uapi/linux/sched.h>

#include <asm/current.h>

#include <linux/pid.h>
#include <linux/sem.h>
#include <linux/shm.h>
#include <linux/kcov.h>
#include <linux/mutex.h>
#include <linux/plist.h>
#include <linux/hrtimer.h>
#include <linux/seccomp.h>
#include <linux/nodemask.h>
#include <linux/rcupdate.h>
#include <linux/resource.h>
#include <linux/latencytop.h>
#include <linux/sched/prio.h>
#include <linux/signal_types.h>
#include <linux/mm_types_task.h>
#include <linux/task_io_accounting.h>

/* task_struct member predeclarations (sorted alphabetically): */
/* task_struct(任务_结构) 预声明成员(按字母顺序排序): */
struct audit_context;
struct backing_dev_info;
struct bio_list;
struct blk_plug;
struct cfs_rq;
struct fs_struct;
struct futex_pi_state;
struct io_context;
struct mempolicy;
struct nameidata;
struct nsproxy;
struct perf_event_context;
struct pid_namespace;
struct pipe_inode_info;
struct rcu_node;
struct reclaim_state;
struct robust_list_head;
struct sched_attr;
struct sched_param;
struct seq_file;
struct sighand_struct;
struct signal_struct;
struct task_delay_info;
struct task_group;

/* * Task state bitmask. NOTE! These bits are also * encoded in fs/proc/array.c: get_task_state(). * * We have two separate sets of flags: task->state * is about runnability, while task->exit_state are * about the task exiting. Confusing, but this way * modifying one set can't modify the other one by * mistake. */

/* Used in tsk->state: */
#define TASK_RUNNING 0x0000
#define TASK_INTERRUPTIBLE 0x0001
#define TASK_UNINTERRUPTIBLE 0x0002
#define __TASK_STOPPED 0x0004
#define __TASK_TRACED 0x0008
/* Used in tsk->exit_state: */
#define EXIT_DEAD 0x0010
#define EXIT_ZOMBIE 0x0020
#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
/* Used in tsk->state again: */
#define TASK_PARKED 0x0040
#define TASK_DEAD 0x0080
#define TASK_WAKEKILL 0x0100
#define TASK_WAKING 0x0200
#define TASK_NOLOAD 0x0400
#define TASK_NEW 0x0800
#define TASK_STATE_MAX 0x1000

/* Convenience macros for the sake of set_current_state: */
#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)

#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)

/* Convenience macros for the sake of wake_up(): */
#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)

/* get_task_state(): */
#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
                     TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
                     __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
                     TASK_PARKED)

#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)

#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)

#define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)

#define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
                     (task->flags & PF_FROZEN) == 0 && \
                     (task->state & TASK_NOLOAD) == 0)

#ifdef CONFIG_DEBUG_ATOMIC_SLEEP

#define __set_current_state(state_value) \
    do {                            \
        current->task_state_change = _THIS_IP_;     \
        current->state = (state_value);         \
    } while (0)
#define set_current_state(state_value) \
    do {                            \
        current->task_state_change = _THIS_IP_;     \
        smp_store_mb(current->state, (state_value));    \
    } while (0)

#else
/* * set_current_state() includes a barrier so that the write of current->state * is correctly serialised wrt the caller's subsequent test of whether to * actually sleep: * * for (;;) { * set_current_state(TASK_UNINTERRUPTIBLE); * if (!need_sleep) * break; * * schedule(); * } * __set_current_state(TASK_RUNNING); * * If the caller does not need such serialisation (because, for instance, the * condition test and condition change and wakeup are under the same lock) then * use __set_current_state(). * * The above is typically ordered against the wakeup, which does: * * need_sleep = false; * wake_up_state(p, TASK_UNINTERRUPTIBLE); * * Where wake_up_state() (and all other wakeup primitives) imply enough * barriers to order the store of the variable against wakeup. * * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is, * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING). * * This is obviously fine, since they both store the exact same value. * * Also see the comments of try_to_wake_up(). */
#define __set_current_state(state_value) do { current->state = (state_value); } while (0)
#define set_current_state(state_value) smp_store_mb(current->state, (state_value))
#endif

/* Task command name length: */
#define TASK_COMM_LEN 16

extern void scheduler_tick(void);

#define MAX_SCHEDULE_TIMEOUT LONG_MAX

extern long schedule_timeout(long timeout);
extern long schedule_timeout_interruptible(long timeout);
extern long schedule_timeout_killable(long timeout);
extern long schedule_timeout_uninterruptible(long timeout);
extern long schedule_timeout_idle(long timeout);
asmlinkage void schedule(void);
extern void schedule_preempt_disabled(void);

extern int __must_check io_schedule_prepare(void);
extern void io_schedule_finish(int token);
extern long io_schedule_timeout(long timeout);
extern void io_schedule(void);

/** * struct prev_cputime - snapshot of system and user cputime * @utime: time spent in user mode * @stime: time spent in system mode * @lock: protects the above two fields * * Stores previous user/system time values such that we can guarantee * monotonicity. */
struct prev_cputime {
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
    u64             utime;
    u64             stime;
    raw_spinlock_t          lock;
#endif
};

/** * struct task_cputime - collected CPU time counts * @utime: time spent in user mode, in nanoseconds * @stime: time spent in kernel mode, in nanoseconds * @sum_exec_runtime: total time spent on the CPU, in nanoseconds * * This structure groups together three kinds of CPU time that are tracked for * threads and thread groups. Most things considering CPU time want to group * these counts together and treat all three of them in parallel. */
struct task_cputime {
    u64             utime;
    u64             stime;
    unsigned long long      sum_exec_runtime;
};

/* Alternate field names when used on cache expirations: */
#define virt_exp utime
#define prof_exp stime
#define sched_exp sum_exec_runtime

enum vtime_state {
    /* Task is sleeping or running in a CPU with VTIME inactive: */
    VTIME_INACTIVE = 0,
    /* Task runs in userspace in a CPU with VTIME active: */
    VTIME_USER,
    /* Task runs in kernelspace in a CPU with VTIME active: */
    VTIME_SYS,
};

struct vtime {
    seqcount_t      seqcount;
    unsigned long long  starttime;
    enum vtime_state    state;
    u64         utime;
    u64         stime;
    u64         gtime;
};

struct sched_info {
#ifdef CONFIG_SCHED_INFO
    /* Cumulative counters: */

    /* # of times we have run on this CPU: */
    unsigned long           pcount;

    /* Time spent waiting on a runqueue: */
    unsigned long long      run_delay;

    /* Timestamps: */

    /* When did we last run on a CPU? */
    unsigned long long      last_arrival;

    /* When were we last queued to run? */
    unsigned long long      last_queued;

#endif /* CONFIG_SCHED_INFO */
};

/* * Integer metrics need fixed point arithmetic, e.g., sched/fair * has a few: load, load_avg, util_avg, freq, and capacity. * * We define a basic fixed point arithmetic range, and then formalize * all these metrics based on that basic range. */
# define SCHED_FIXEDPOINT_SHIFT 10
# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)

struct load_weight {
    unsigned long           weight;
    u32             inv_weight;
};

/* * The load_avg/util_avg accumulates an infinite geometric series * (see __update_load_avg() in kernel/sched/fair.c). * * [load_avg definition] * * load_avg = runnable% * scale_load_down(load) * * where runnable% is the time ratio that a sched_entity is runnable. * For cfs_rq, it is the aggregated load_avg of all runnable and * blocked sched_entities. * * load_avg may also take frequency scaling into account: * * load_avg = runnable% * scale_load_down(load) * freq% * * where freq% is the CPU frequency normalized to the highest frequency. * * [util_avg definition] * * util_avg = running% * SCHED_CAPACITY_SCALE * * where running% is the time ratio that a sched_entity is running on * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable * and blocked sched_entities. * * util_avg may also factor frequency scaling and CPU capacity scaling: * * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity% * * where freq% is the same as above, and capacity% is the CPU capacity * normalized to the greatest capacity (due to uarch differences, etc). * * N.B., the above ratios (runnable%, running%, freq%, and capacity%) * themselves are in the range of [0, 1]. To do fixed point arithmetics, * we therefore scale them to as large a range as necessary. This is for * example reflected by util_avg's SCHED_CAPACITY_SCALE. * * [Overflow issue] * * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities * with the highest load (=88761), always runnable on a single cfs_rq, * and should not overflow as the number already hits PID_MAX_LIMIT. * * For all other cases (including 32-bit kernels), struct load_weight's * weight will overflow first before we do, because: * * Max(load_avg) <= Max(load.weight) * * Then it is the load_weight's responsibility to consider overflow * issues. */
struct sched_avg {
    u64             last_update_time;
    u64             load_sum;
    u64             runnable_load_sum;
    u32             util_sum;
    u32             period_contrib;
    unsigned long           load_avg;
    unsigned long           runnable_load_avg;
    unsigned long           util_avg;
};

struct sched_statistics {
#ifdef CONFIG_SCHEDSTATS
    u64             wait_start;
    u64             wait_max;
    u64             wait_count;
    u64             wait_sum;
    u64             iowait_count;
    u64             iowait_sum;

    u64             sleep_start;
    u64             sleep_max;
    s64             sum_sleep_runtime;

    u64             block_start;
    u64             block_max;
    u64             exec_max;
    u64             slice_max;

    u64             nr_migrations_cold;
    u64             nr_failed_migrations_affine;
    u64             nr_failed_migrations_running;
    u64             nr_failed_migrations_hot;
    u64             nr_forced_migrations;

    u64             nr_wakeups;
    u64             nr_wakeups_sync;
    u64             nr_wakeups_migrate;
    u64             nr_wakeups_local;
    u64             nr_wakeups_remote;
    u64             nr_wakeups_affine;
    u64             nr_wakeups_affine_attempts;
    u64             nr_wakeups_passive;
    u64             nr_wakeups_idle;
#endif
};

struct sched_entity {
    /* For load-balancing: */
    struct load_weight      load;
    unsigned long           runnable_weight;
    struct rb_node          run_node;
    struct list_head        group_node;
    unsigned int            on_rq;

    u64             exec_start;
    u64             sum_exec_runtime;
    u64             vruntime;
    u64             prev_sum_exec_runtime;

    u64             nr_migrations;

    struct sched_statistics     statistics;

#ifdef CONFIG_FAIR_GROUP_SCHED
    int             depth;
    struct sched_entity     *parent;
    /* rq on which this entity is (to be) queued: */
    struct cfs_rq           *cfs_rq;
    /* rq "owned" by this entity/group: */
    struct cfs_rq           *my_q;
#endif

#ifdef CONFIG_SMP
    /* * Per entity load average tracking. * * Put into separate cache line so it does not * collide with read-mostly values above. */
    struct sched_avg        avg ____cacheline_aligned_in_smp;
#endif
};

struct sched_rt_entity {
    struct list_head        run_list;
    unsigned long           timeout;
    unsigned long           watchdog_stamp;
    unsigned int            time_slice;
    unsigned short          on_rq;
    unsigned short          on_list;

    struct sched_rt_entity      *back;
#ifdef CONFIG_RT_GROUP_SCHED
    struct sched_rt_entity      *parent;
    /* rq on which this entity is (to be) queued: */
    struct rt_rq            *rt_rq;
    /* rq "owned" by this entity/group: */
    struct rt_rq            *my_q;
#endif
} __randomize_layout;

struct sched_dl_entity {
    struct rb_node          rb_node;

    /* * Original scheduling parameters. Copied here from sched_attr * during sched_setattr(), they will remain the same until * the next sched_setattr(). */
    u64             dl_runtime; /* Maximum runtime for each instance */
    u64             dl_deadline;    /* Relative deadline of each instance */
    u64             dl_period;  /* Separation of two instances (period) */
    u64             dl_bw;      /* dl_runtime / dl_period */
    u64             dl_density; /* dl_runtime / dl_deadline */

    /* * Actual scheduling parameters. Initialized with the values above, * they are continously updated during task execution. Note that * the remaining runtime could be < 0 in case we are in overrun. */
    s64             runtime;    /* Remaining runtime for this instance */
    u64             deadline;   /* Absolute deadline for this instance */
    unsigned int            flags;      /* Specifying the scheduler behaviour */

    /* * Some bool flags: * * @dl_throttled tells if we exhausted the runtime. If so, the * task has to wait for a replenishment to be performed at the * next firing of dl_timer. * * @dl_boosted tells if we are boosted due to DI. If so we are * outside bandwidth enforcement mechanism (but only until we * exit the critical section); * * @dl_yielded tells if task gave up the CPU before consuming * all its available runtime during the last job. * * @dl_non_contending tells if the task is inactive while still * contributing to the active utilization. In other words, it * indicates if the inactive timer has been armed and its handler * has not been executed yet. This flag is useful to avoid race * conditions between the inactive timer handler and the wakeup * code. * * @dl_overrun tells if the task asked to be informed about runtime * overruns. */
    unsigned int            dl_throttled      : 1;
    unsigned int            dl_boosted        : 1;
    unsigned int            dl_yielded        : 1;
    unsigned int            dl_non_contending : 1;
    unsigned int            dl_overrun    : 1;

    /* * Bandwidth enforcement timer. Each -deadline task has its * own bandwidth to be enforced, thus we need one timer per task. */
    struct hrtimer          dl_timer;

    /* * Inactive timer, responsible for decreasing the active utilization * at the "0-lag time". When a -deadline task blocks, it contributes * to GRUB's active utilization until the "0-lag time", hence a * timer is needed to decrease the active utilization at the correct * time. */
    struct hrtimer inactive_timer;
};

union rcu_special {
    struct {
        u8          blocked;
        u8          need_qs;
        u8          exp_need_qs;

        /* Otherwise the compiler can store garbage here: */
        u8          pad;
    } b; /* Bits. */
    u32 s; /* Set of bits. */
};

enum perf_event_task_context {
    perf_invalid_context = -1,
    perf_hw_context = 0,
    perf_sw_context,
    perf_nr_task_contexts,
};

struct wake_q_node {
    struct wake_q_node *next;
};

struct task_struct {
#ifdef CONFIG_THREAD_INFO_IN_TASK
    /* * For reasons of header soup (see current_thread_info()), this * must be the first element of task_struct. * 由于头的困难(见 current_thread_info()【翻译:现在的线程信息】 * [详见thread_indo.h-86](https://blog.csdn.net/u011288483/article/details/80247067)), * 这必须是task_struct()的第一个元素。 */
    struct thread_info      thread_info;
#endif
    /* -1 unrunnable, 0 runnable, >0 stopped: */
    /* 这个是进程的运行时状态,-1代表不可运行,0代表可运行,>0代表已停止 */
    volatile long           state;

    /* * This begins the randomizable portion of task_struct. Only * scheduling-critical items should be added above here. */
    randomized_struct_fields_start

    void                *stack;
    atomic_t            usage;
    /* Per task flags (PF_*), defined further below: */
    unsigned int            flags;
    unsigned int            ptrace;

#ifdef CONFIG_SMP
    struct llist_node       wake_entry;
    int             on_cpu;
#ifdef CONFIG_THREAD_INFO_IN_TASK
    /* Current CPU: */
    unsigned int            cpu;
#endif
    unsigned int            wakee_flips;
    unsigned long           wakee_flip_decay_ts;
    struct task_struct      *last_wakee;

    /* * recent_used_cpu is initially set as the last CPU used by a task * that wakes affine another task. Waker/wakee relationships can * push tasks around a CPU where each wakeup moves to the next one. * Tracking a recently used CPU allows a quick search for a recently * used CPU that may be idle. */
    int             recent_used_cpu;
    int             wake_cpu;
#endif
    int             on_rq;

    int             prio;
    int             static_prio;
    int             normal_prio;
    unsigned int            rt_priority;

    const struct sched_class    *sched_class;
    struct sched_entity     se;
    struct sched_rt_entity      rt;
#ifdef CONFIG_CGROUP_SCHED
    struct task_group       *sched_task_group;
#endif
    struct sched_dl_entity      dl;

#ifdef CONFIG_PREEMPT_NOTIFIERS
    /* List of struct preempt_notifier: */
    struct hlist_head       preempt_notifiers;
#endif

#ifdef CONFIG_BLK_DEV_IO_TRACE
    unsigned int            btrace_seq;
#endif

    unsigned int            policy;
    int             nr_cpus_allowed;
    cpumask_t           cpus_allowed;

#ifdef CONFIG_PREEMPT_RCU
    int             rcu_read_lock_nesting;
    union rcu_special       rcu_read_unlock_special;
    struct list_head        rcu_node_entry;
    struct rcu_node         *rcu_blocked_node;
#endif /* #ifdef CONFIG_PREEMPT_RCU */

#ifdef CONFIG_TASKS_RCU
    unsigned long           rcu_tasks_nvcsw;
    u8              rcu_tasks_holdout;
    u8              rcu_tasks_idx;
    int             rcu_tasks_idle_cpu;
    struct list_head        rcu_tasks_holdout_list;
#endif /* #ifdef CONFIG_TASKS_RCU */

    struct sched_info       sched_info;

    struct list_head        tasks;
#ifdef CONFIG_SMP
    struct plist_node       pushable_tasks;
    struct rb_node          pushable_dl_tasks;
#endif

    struct mm_struct        *mm;
    struct mm_struct        *active_mm;

    /* Per-thread vma caching: */
    struct vmacache         vmacache;

#ifdef SPLIT_RSS_COUNTING
    struct task_rss_stat        rss_stat;
#endif
    int             exit_state;
    int             exit_code;
    int             exit_signal;
    /* The signal sent when the parent dies: */
    int             pdeath_signal;
    /* JOBCTL_*, siglock protected: */
    unsigned long           jobctl;

    /* Used for emulating ABI behavior of previous Linux versions: */
    unsigned int            personality;

    /* Scheduler bits, serialized by scheduler locks: */
    unsigned            sched_reset_on_fork:1;
    unsigned            sched_contributes_to_load:1;
    unsigned            sched_migrated:1;
    unsigned            sched_remote_wakeup:1;
    /* Force alignment to the next boundary: */
    unsigned            :0;

    /* Unserialized, strictly 'current' */

    /* Bit to tell LSMs we're in execve(): */
    unsigned            in_execve:1;
    unsigned            in_iowait:1;
#ifndef TIF_RESTORE_SIGMASK
    unsigned            restore_sigmask:1;
#endif
#ifdef CONFIG_MEMCG
    unsigned            memcg_may_oom:1;
#ifndef CONFIG_SLOB
    unsigned            memcg_kmem_skip_account:1;
#endif
#endif
#ifdef CONFIG_COMPAT_BRK
    unsigned            brk_randomized:1;
#endif
#ifdef CONFIG_CGROUPS
    /* disallow userland-initiated cgroup migration */
    unsigned            no_cgroup_migration:1;
#endif

    unsigned long           atomic_flags; /* Flags requiring atomic access. */

    struct restart_block        restart_block;

    pid_t               pid;
    pid_t               tgid;

#ifdef CONFIG_CC_STACKPROTECTOR
    /* Canary value for the -fstack-protector GCC feature: */
    unsigned long           stack_canary;
#endif
    /* * Pointers to the (original) parent process, youngest child, younger sibling, * older sibling, respectively. (p->father can be replaced with * p->real_parent->pid) */

    /* Real parent process: */
    struct task_struct __rcu    *real_parent;

    /* Recipient of SIGCHLD, wait4() reports: */
    struct task_struct __rcu    *parent;

    /* * Children/sibling form the list of natural children: */
    struct list_head        children;
    struct list_head        sibling;
    struct task_struct      *group_leader;

    /* * 'ptraced' is the list of tasks this task is using ptrace() on. * * This includes both natural children and PTRACE_ATTACH targets. * 'ptrace_entry' is this task's link on the p->parent->ptraced list. */
    struct list_head        ptraced;
    struct list_head        ptrace_entry;

    /* PID/PID hash table linkage. */
    struct pid_link         pids[PIDTYPE_MAX];
    struct list_head        thread_group;
    struct list_head        thread_node;

    struct completion       *vfork_done;

    /* CLONE_CHILD_SETTID: */
    int __user          *set_child_tid;

    /* CLONE_CHILD_CLEARTID: */
    int __user          *clear_child_tid;

    u64             utime;
    u64             stime;
#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
    u64             utimescaled;
    u64             stimescaled;
#endif
    u64             gtime;
    struct prev_cputime     prev_cputime;
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
    struct vtime            vtime;
#endif

#ifdef CONFIG_NO_HZ_FULL
    atomic_t            tick_dep_mask;
#endif
    /* Context switch counts: */
    unsigned long           nvcsw;
    unsigned long           nivcsw;

    /* Monotonic time in nsecs: */
    u64             start_time;

    /* Boot based time in nsecs: */
    u64             real_start_time;

    /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
    unsigned long           min_flt;
    unsigned long           maj_flt;

#ifdef CONFIG_POSIX_TIMERS
    struct task_cputime     cputime_expires;
    struct list_head        cpu_timers[3];
#endif

    /* Process credentials: */

    /* Tracer's credentials at attach: */
    const struct cred __rcu     *ptracer_cred;

    /* Objective and real subjective task credentials (COW): */
    const struct cred __rcu     *real_cred;

    /* Effective (overridable) subjective task credentials (COW): */
    const struct cred __rcu     *cred;

    /* * executable name, excluding path. * * - normally initialized setup_new_exec() * - access it with [gs]et_task_comm() * - lock it with task_lock() */
    char                comm[TASK_COMM_LEN];

    struct nameidata        *nameidata;

#ifdef CONFIG_SYSVIPC
    struct sysv_sem         sysvsem;
    struct sysv_shm         sysvshm;
#endif
#ifdef CONFIG_DETECT_HUNG_TASK
    unsigned long           last_switch_count;
#endif
    /* Filesystem information: */
    struct fs_struct        *fs;

    /* Open file information: */
    struct files_struct     *files;

    /* Namespaces: */
    struct nsproxy          *nsproxy;

    /* Signal handlers: */
    struct signal_struct        *signal;
    struct sighand_struct       *sighand;
    sigset_t            blocked;
    sigset_t            real_blocked;
    /* Restored if set_restore_sigmask() was used: */
    sigset_t            saved_sigmask;
    struct sigpending       pending;
    unsigned long           sas_ss_sp;
    size_t              sas_ss_size;
    unsigned int            sas_ss_flags;

    struct callback_head        *task_works;

    struct audit_context        *audit_context;
#ifdef CONFIG_AUDITSYSCALL
    kuid_t              loginuid;
    unsigned int            sessionid;
#endif
    struct seccomp          seccomp;

    /* Thread group tracking: */
    u32             parent_exec_id;
    u32             self_exec_id;

    /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
    spinlock_t          alloc_lock;

    /* Protection of the PI data structures: */
    raw_spinlock_t          pi_lock;

    struct wake_q_node      wake_q;

#ifdef CONFIG_RT_MUTEXES
    /* PI waiters blocked on a rt_mutex held by this task: */
    struct rb_root_cached       pi_waiters;
    /* Updated under owner's pi_lock and rq lock */
    struct task_struct      *pi_top_task;
    /* Deadlock detection and priority inheritance handling: */
    struct rt_mutex_waiter      *pi_blocked_on;
#endif

#ifdef CONFIG_DEBUG_MUTEXES
    /* Mutex deadlock detection: */
    struct mutex_waiter     *blocked_on;
#endif

#ifdef CONFIG_TRACE_IRQFLAGS
    unsigned int            irq_events;
    unsigned long           hardirq_enable_ip;
    unsigned long           hardirq_disable_ip;
    unsigned int            hardirq_enable_event;
    unsigned int            hardirq_disable_event;
    int             hardirqs_enabled;
    int             hardirq_context;
    unsigned long           softirq_disable_ip;
    unsigned long           softirq_enable_ip;
    unsigned int            softirq_disable_event;
    unsigned int            softirq_enable_event;
    int             softirqs_enabled;
    int             softirq_context;
#endif

#ifdef CONFIG_LOCKDEP
# define MAX_LOCK_DEPTH 48UL
    u64             curr_chain_key;
    int             lockdep_depth;
    unsigned int            lockdep_recursion;
    struct held_lock        held_locks[MAX_LOCK_DEPTH];
#endif

#ifdef CONFIG_UBSAN
    unsigned int            in_ubsan;
#endif

    /* Journalling filesystem info: */
    void                *journal_info;

    /* Stacked block device info: */
    struct bio_list         *bio_list;

#ifdef CONFIG_BLOCK
    /* Stack plugging: */
    struct blk_plug         *plug;
#endif

    /* VM state: */
    struct reclaim_state        *reclaim_state;

    struct backing_dev_info     *backing_dev_info;

    struct io_context       *io_context;

    /* Ptrace state: */
    unsigned long           ptrace_message;
    siginfo_t           *last_siginfo;

    struct task_io_accounting   ioac;
#ifdef CONFIG_TASK_XACCT
    /* Accumulated RSS usage: */
    u64             acct_rss_mem1;
    /* Accumulated virtual memory usage: */
    u64             acct_vm_mem1;
    /* stime + utime since last update: */
    u64             acct_timexpd;
#endif
#ifdef CONFIG_CPUSETS
    /* Protected by ->alloc_lock: */
    nodemask_t          mems_allowed;
    /* Seqence number to catch updates: */
    seqcount_t          mems_allowed_seq;
    int             cpuset_mem_spread_rotor;
    int             cpuset_slab_spread_rotor;
#endif
#ifdef CONFIG_CGROUPS
    /* Control Group info protected by css_set_lock: */
    struct css_set __rcu        *cgroups;
    /* cg_list protected by css_set_lock and tsk->alloc_lock: */
    struct list_head        cg_list;
#endif
#ifdef CONFIG_INTEL_RDT
    u32             closid;
    u32             rmid;
#endif
#ifdef CONFIG_FUTEX
    struct robust_list_head __user  *robust_list;
#ifdef CONFIG_COMPAT
    struct compat_robust_list_head __user *compat_robust_list;
#endif
    struct list_head        pi_state_list;
    struct futex_pi_state       *pi_state_cache;
#endif
#ifdef CONFIG_PERF_EVENTS
    struct perf_event_context   *perf_event_ctxp[perf_nr_task_contexts];
    struct mutex            perf_event_mutex;
    struct list_head        perf_event_list;
#endif
#ifdef CONFIG_DEBUG_PREEMPT
    unsigned long           preempt_disable_ip;
#endif
#ifdef CONFIG_NUMA
    /* Protected by alloc_lock: */
    struct mempolicy        *mempolicy;
    short               il_prev;
    short               pref_node_fork;
#endif
#ifdef CONFIG_NUMA_BALANCING
    int             numa_scan_seq;
    unsigned int            numa_scan_period;
    unsigned int            numa_scan_period_max;
    int             numa_preferred_nid;
    unsigned long           numa_migrate_retry;
    /* Migration stamp: */
    u64             node_stamp;
    u64             last_task_numa_placement;
    u64             last_sum_exec_runtime;
    struct callback_head        numa_work;

    struct list_head        numa_entry;
    struct numa_group       *numa_group;

    /* * numa_faults is an array split into four regions: * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer * in this precise order. * * faults_memory: Exponential decaying average of faults on a per-node * basis. Scheduling placement decisions are made based on these * counts. The values remain static for the duration of a PTE scan. * faults_cpu: Track the nodes the process was running on when a NUMA * hinting fault was incurred. * faults_memory_buffer and faults_cpu_buffer: Record faults per node * during the current scan window. When the scan completes, the counts * in faults_memory and faults_cpu decay and these values are copied. */
    unsigned long           *numa_faults;
    unsigned long           total_numa_faults;

    /* * numa_faults_locality tracks if faults recorded during the last * scan window were remote/local or failed to migrate. The task scan * period is adapted based on the locality of the faults with different * weights depending on whether they were shared or private faults */
    unsigned long           numa_faults_locality[3];

    unsigned long           numa_pages_migrated;
#endif /* CONFIG_NUMA_BALANCING */

    struct tlbflush_unmap_batch tlb_ubc;

    struct rcu_head         rcu;

    /* Cache last used pipe for splice(): */
    struct pipe_inode_info      *splice_pipe;

    struct page_frag        task_frag;

#ifdef CONFIG_TASK_DELAY_ACCT
    struct task_delay_info      *delays;
#endif

#ifdef CONFIG_FAULT_INJECTION
    int             make_it_fail;
    unsigned int            fail_nth;
#endif
    /* * When (nr_dirtied >= nr_dirtied_pause), it's time to call * balance_dirty_pages() for a dirty throttling pause: */
    int             nr_dirtied;
    int             nr_dirtied_pause;
    /* Start of a write-and-pause period: */
    unsigned long           dirty_paused_when;

#ifdef CONFIG_LATENCYTOP
    int             latency_record_count;
    struct latency_record       latency_record[LT_SAVECOUNT];
#endif
    /* * Time slack values; these are used to round up poll() and * select() etc timeout values. These are in nanoseconds. */
    u64             timer_slack_ns;
    u64             default_timer_slack_ns;

#ifdef CONFIG_KASAN
    unsigned int            kasan_depth;
#endif

#ifdef CONFIG_FUNCTION_GRAPH_TRACER
    /* Index of current stored address in ret_stack: */
    int             curr_ret_stack;

    /* Stack of return addresses for return function tracing: */
    struct ftrace_ret_stack     *ret_stack;

    /* Timestamp for last schedule: */
    unsigned long long      ftrace_timestamp;

    /* * Number of functions that haven't been traced * because of depth overrun: */
    atomic_t            trace_overrun;

    /* Pause tracing: */
    atomic_t            tracing_graph_pause;
#endif

#ifdef CONFIG_TRACING
    /* State flags for use by tracers: */
    unsigned long           trace;

    /* Bitmask and counter of trace recursion: */
    unsigned long           trace_recursion;
#endif /* CONFIG_TRACING */

#ifdef CONFIG_KCOV
    /* Coverage collection mode enabled for this task (0 if disabled): */
    enum kcov_mode          kcov_mode;

    /* Size of the kcov_area: */
    unsigned int            kcov_size;

    /* Buffer for coverage collection: */
    void                *kcov_area;

    /* KCOV descriptor wired with this task or NULL: */
    struct kcov         *kcov;
#endif

#ifdef CONFIG_MEMCG
    struct mem_cgroup       *memcg_in_oom;
    gfp_t               memcg_oom_gfp_mask;
    int             memcg_oom_order;

    /* Number of pages to reclaim on returning to userland: */
    unsigned int            memcg_nr_pages_over_high;
#endif

#ifdef CONFIG_UPROBES
    struct uprobe_task      *utask;
#endif
#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
    unsigned int            sequential_io;
    unsigned int            sequential_io_avg;
#endif
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
    unsigned long           task_state_change;
#endif
    int             pagefault_disabled;
#ifdef CONFIG_MMU
    struct task_struct      *oom_reaper_list;
#endif
#ifdef CONFIG_VMAP_STACK
    struct vm_struct        *stack_vm_area;
#endif
#ifdef CONFIG_THREAD_INFO_IN_TASK
    /* A live task holds one reference: */
    atomic_t            stack_refcount;
#endif
#ifdef CONFIG_LIVEPATCH
    int patch_state;
#endif
#ifdef CONFIG_SECURITY
    /* Used by LSM modules for access restriction: */
    void                *security;
#endif

    /* * New fields for task_struct should be added above here, so that * they are included in the randomized portion of task_struct. */
    randomized_struct_fields_end

    /* CPU-specific state of this task: */
    struct thread_struct        thread;

    /* * WARNING: on x86, 'thread_struct' contains a variable-sized * structure. It *MUST* be at the end of 'task_struct'. * * Do not put anything below here! */
};

static inline struct pid *task_pid(struct task_struct *task)
{
    return task->pids[PIDTYPE_PID].pid;
}

static inline struct pid *task_tgid(struct task_struct *task)
{
    return task->group_leader->pids[PIDTYPE_PID].pid;
}

/* * Without tasklist or RCU lock it is not safe to dereference * the result of task_pgrp/task_session even if task == current, * we can race with another thread doing sys_setsid/sys_setpgid. */
static inline struct pid *task_pgrp(struct task_struct *task)
{
    return task->group_leader->pids[PIDTYPE_PGID].pid;
}

static inline struct pid *task_session(struct task_struct *task)
{
    return task->group_leader->pids[PIDTYPE_SID].pid;
}

/* * the helpers to get the task's different pids as they are seen * from various namespaces * * task_xid_nr() : global id, i.e. the id seen from the init namespace; * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of * current. * task_xid_nr_ns() : id seen from the ns specified; * * see also pid_nr() etc in include/linux/pid.h */
pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);

static inline pid_t task_pid_nr(struct task_struct *tsk)
{
    return tsk->pid;
}

static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
{
    return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
}

static inline pid_t task_pid_vnr(struct task_struct *tsk)
{
    return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
}


static inline pid_t task_tgid_nr(struct task_struct *tsk)
{
    return tsk->tgid;
}

/** * pid_alive - check that a task structure is not stale * @p: Task structure to be checked. * * Test if a process is not yet dead (at most zombie state) * If pid_alive fails, then pointers within the task structure * can be stale and must not be dereferenced. * * Return: 1 if the process is alive. 0 otherwise. */
static inline int pid_alive(const struct task_struct *p)
{
    return p->pids[PIDTYPE_PID].pid != NULL;
}

static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
{
    return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
}

static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
{
    return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
}


static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
{
    return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
}

static inline pid_t task_session_vnr(struct task_struct *tsk)
{
    return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
}

static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
{
    return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, ns);
}

static inline pid_t task_tgid_vnr(struct task_struct *tsk)
{
    return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, NULL);
}

static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
{
    pid_t pid = 0;

    rcu_read_lock();
    if (pid_alive(tsk))
        pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
    rcu_read_unlock();

    return pid;
}

static inline pid_t task_ppid_nr(const struct task_struct *tsk)
{
    return task_ppid_nr_ns(tsk, &init_pid_ns);
}

/* Obsolete, do not use: */
static inline pid_t task_pgrp_nr(struct task_struct *tsk)
{
    return task_pgrp_nr_ns(tsk, &init_pid_ns);
}

#define TASK_REPORT_IDLE (TASK_REPORT + 1)
#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)

static inline unsigned int task_state_index(struct task_struct *tsk)
{
    unsigned int tsk_state = READ_ONCE(tsk->state);
    unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;

    BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);

    if (tsk_state == TASK_IDLE)
        state = TASK_REPORT_IDLE;

    return fls(state);
}

static inline char task_index_to_char(unsigned int state)
{
    static const char state_char[] = "RSDTtXZPI";

    BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);

    return state_char[state];
}

static inline char task_state_to_char(struct task_struct *tsk)
{
    return task_index_to_char(task_state_index(tsk));
}

/** * is_global_init - check if a task structure is init. Since init * is free to have sub-threads we need to check tgid. * @tsk: Task structure to be checked. * * Check if a task structure is the first user space task the kernel created. * * Return: 1 if the task structure is init. 0 otherwise. */
static inline int is_global_init(struct task_struct *tsk)
{
    return task_tgid_nr(tsk) == 1;
}

extern struct pid *cad_pid;

/* * Per process flags */
#define PF_IDLE 0x00000002 /* I am an IDLE thread */
#define PF_EXITING 0x00000004 /* Getting shut down */
#define PF_EXITPIDONE 0x00000008 /* PI exit done on shut down */
#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
#define PF_DUMPCORE 0x00000200 /* Dumped core */
#define PF_SIGNALED 0x00000400 /* Killed by a signal */
#define PF_MEMALLOC 0x00000800 /* Allocating memory */
#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
#define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
#define PF_FROZEN 0x00010000 /* Frozen for system suspend */
#define PF_KSWAPD 0x00020000 /* I am kswapd */
#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */

/* * Only the _current_ task can read/write to tsk->flags, but other * tasks can access tsk->flags in readonly mode for example * with tsk_used_math (like during threaded core dumping). * There is however an exception to this rule during ptrace * or during fork: the ptracer task is allowed to write to the * child->flags of its traced child (same goes for fork, the parent * can write to the child->flags), because we're guaranteed the * child is not running and in turn not changing child->flags * at the same time the parent does it. */
#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
#define clear_used_math() clear_stopped_child_used_math(current)
#define set_used_math() set_stopped_child_used_math(current)

#define conditional_stopped_child_used_math(condition, child) \
    do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)

#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)

#define copy_to_stopped_child_used_math(child) \
    do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)

/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
#define used_math() tsk_used_math(current)

static inline bool is_percpu_thread(void)
{
#ifdef CONFIG_SMP
    return (current->flags & PF_NO_SETAFFINITY) &&
        (current->nr_cpus_allowed  == 1);
#else
    return true;
#endif
}

/* Per-process atomic flags. */
#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */


#define TASK_PFA_TEST(name, func) \
    static inline bool task_##func(struct task_struct *p)       \
    { return test_bit(PFA_##name, &p->atomic_flags); }

#define TASK_PFA_SET(name, func) \
    static inline void task_set_##func(struct task_struct *p)   \
    { set_bit(PFA_##name, &p->atomic_flags); }

#define TASK_PFA_CLEAR(name, func) \
    static inline void task_clear_##func(struct task_struct *p) \
    { clear_bit(PFA_##name, &p->atomic_flags); }

TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)

TASK_PFA_TEST(SPREAD_PAGE, spread_page)
TASK_PFA_SET(SPREAD_PAGE, spread_page)
TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)

TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
TASK_PFA_SET(SPREAD_SLAB, spread_slab)
TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)

static inline void
current_restore_flags(unsigned long orig_flags, unsigned long flags)
{
    current->flags &= ~flags;
    current->flags |= orig_flags & flags;
}

extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
#ifdef CONFIG_SMP
extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
#else
static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
}
static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
{
    if (!cpumask_test_cpu(0, new_mask))
        return -EINVAL;
    return 0;
}
#endif

#ifndef cpu_relax_yield
#define cpu_relax_yield() cpu_relax()
#endif

extern int yield_to(struct task_struct *p, bool preempt);
extern void set_user_nice(struct task_struct *p, long nice);
extern int task_prio(const struct task_struct *p);

/** * task_nice - return the nice value of a given task. * @p: the task in question. * * Return: The nice value [ -20 ... 0 ... 19 ]. */
static inline int task_nice(const struct task_struct *p)
{
    return PRIO_TO_NICE((p)->static_prio);
}

extern int can_nice(const struct task_struct *p, const int nice);
extern int task_curr(const struct task_struct *p);
extern int idle_cpu(int cpu);
extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
extern int sched_setattr(struct task_struct *, const struct sched_attr *);
extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
extern struct task_struct *idle_task(int cpu);

/** * is_idle_task - is the specified task an idle task? * @p: the task in question. * * Return: 1 if @p is an idle task. 0 otherwise. */
static inline bool is_idle_task(const struct task_struct *p)
{
    return !!(p->flags & PF_IDLE);
}

extern struct task_struct *curr_task(int cpu);
extern void ia64_set_curr_task(int cpu, struct task_struct *p);

void yield(void);

union thread_union {
#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
    struct task_struct task;
#endif
#ifndef CONFIG_THREAD_INFO_IN_TASK
    struct thread_info thread_info;
#endif
    unsigned long stack[THREAD_SIZE/sizeof(long)];
};

#ifndef CONFIG_THREAD_INFO_IN_TASK
extern struct thread_info init_thread_info;
#endif

extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];

#ifdef CONFIG_THREAD_INFO_IN_TASK
static inline struct thread_info *task_thread_info(struct task_struct *task)
{
    return &task->thread_info;
}
#elif !defined(__HAVE_THREAD_FUNCTIONS)
# define task_thread_info(task) ((struct thread_info *)(task)->stack)
#endif

/* * find a task by one of its numerical ids * * find_task_by_pid_ns(): * finds a task by its pid in the specified namespace * find_task_by_vpid(): * finds a task by its virtual pid * * see also find_vpid() etc in include/linux/pid.h */

extern struct task_struct *find_task_by_vpid(pid_t nr);
extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);

/* * find a task by its virtual pid and get the task struct */
extern struct task_struct *find_get_task_by_vpid(pid_t nr);

extern int wake_up_state(struct task_struct *tsk, unsigned int state);
extern int wake_up_process(struct task_struct *tsk);
extern void wake_up_new_task(struct task_struct *tsk);

#ifdef CONFIG_SMP
extern void kick_process(struct task_struct *tsk);
#else
static inline void kick_process(struct task_struct *tsk) { }
#endif

extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);

static inline void set_task_comm(struct task_struct *tsk, const char *from)
{
    __set_task_comm(tsk, from, false);
}

extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
#define get_task_comm(buf, tsk) ({ \
    BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
    __get_task_comm(buf, sizeof(buf), tsk);     \
})

#ifdef CONFIG_SMP
void scheduler_ipi(void);
extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
#else
static inline void scheduler_ipi(void) { }
static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
{
    return 1;
}
#endif

/* * Set thread flags in other task's structures. * See asm/thread_info.h for TIF_xxxx flags available: */
static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
{
    set_ti_thread_flag(task_thread_info(tsk), flag);
}

static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
{
    clear_ti_thread_flag(task_thread_info(tsk), flag);
}

static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
{
    return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
}

static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
{
    return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
}

static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
{
    return test_ti_thread_flag(task_thread_info(tsk), flag);
}

static inline void set_tsk_need_resched(struct task_struct *tsk)
{
    set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
}

static inline void clear_tsk_need_resched(struct task_struct *tsk)
{
    clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
}

static inline int test_tsk_need_resched(struct task_struct *tsk)
{
    return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
}

/* * cond_resched() and cond_resched_lock(): latency reduction via * explicit rescheduling in places that are safe. The return * value indicates whether a reschedule was done in fact. * cond_resched_lock() will drop the spinlock before scheduling, * cond_resched_softirq() will enable bhs before scheduling. */
#ifndef CONFIG_PREEMPT
extern int _cond_resched(void);
#else
static inline int _cond_resched(void) { return 0; }
#endif

#define cond_resched() ({ \
    ___might_sleep(__FILE__, __LINE__, 0);  \
    _cond_resched();            \
})

extern int __cond_resched_lock(spinlock_t *lock);

#define cond_resched_lock(lock) ({ \
    ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
    __cond_resched_lock(lock);              \
})

extern int __cond_resched_softirq(void);

#define cond_resched_softirq() ({ \
    ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
    __cond_resched_softirq();                   \
})

static inline void cond_resched_rcu(void)
{
#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
    rcu_read_unlock();
    cond_resched();
    rcu_read_lock();
#endif
}

/* * Does a critical section need to be broken due to another * task waiting?: (technically does not depend on CONFIG_PREEMPT, * but a general need for low latency) */
static inline int spin_needbreak(spinlock_t *lock)
{
#ifdef CONFIG_PREEMPT
    return spin_is_contended(lock);
#else
    return 0;
#endif
}

static __always_inline bool need_resched(void)
{
    return unlikely(tif_need_resched());
}

/* * Wrappers for p->thread_info->cpu access. No-op on UP. */
#ifdef CONFIG_SMP

static inline unsigned int task_cpu(const struct task_struct *p)
{
#ifdef CONFIG_THREAD_INFO_IN_TASK
    return p->cpu;
#else
    return task_thread_info(p)->cpu;
#endif
}

extern void set_task_cpu(struct task_struct *p, unsigned int cpu);

#else

static inline unsigned int task_cpu(const struct task_struct *p)
{
    return 0;
}

static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
{
}

#endif /* CONFIG_SMP */

/* * In order to reduce various lock holder preemption latencies provide an * interface to see if a vCPU is currently running or not. * * This allows us to terminate optimistic spin loops and block, analogous to * the native optimistic spin heuristic of testing if the lock owner task is * running or not. */
#ifndef vcpu_is_preempted
# define vcpu_is_preempted(cpu) false
#endif

extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
extern long sched_getaffinity(pid_t pid, struct cpumask *mask);

#ifndef TASK_SIZE_OF
#define TASK_SIZE_OF(tsk) TASK_SIZE
#endif

#endif

Jetbrains全家桶1年46,售后保障稳定

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/201095.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • oracle触发器示例,Oracle触发器简单示例

    oracle触发器示例,Oracle触发器简单示例首先创建两张测试表:CREATETABLEtest(t_idNUMBER(4),t_nameVARCHAR2(20),t_ageNUMBER(2),t_sexCHAR);CREATETABLEtest_log(caozuoVARCHAR2(20),tdatedate);然后创建触发器并且进行测试:CREATEORREPLACETRIGGERtest_t…

  • bat命令闪退问题

    bat命令闪退问题今天执行一个bat命令,然而会出现问题:双击执行bat命令时,命令提示符界面会闪退。然而该bat命令在他人电脑上可正常执行,而我会遇到这种问题。以下是我尝试的方法:首先尝试编辑bat命令,在bat命令末尾添加pause,保存。如此,重新双击执行bat命令,命令提示符界面仍然闪退。接着借助浏览器查询这种问题发生的原因以及解决方法,https://blog.csdn.net/springon…

  • 用flash做古诗动画_Flash制作跟我学 用遮罩技术制作古诗动画-FLASH课件制作(FLASH课件制作教程)-flash课件吧(湖北金鹰)…

    用flash做古诗动画_Flash制作跟我学 用遮罩技术制作古诗动画-FLASH课件制作(FLASH课件制作教程)-flash课件吧(湖北金鹰)…Flash制作跟我学用遮罩技术制作古诗动画提示:遮罩—使用遮罩图层可以让Flash设计者有选择地显示图层的某些部分,应用遮罩需要创建一个图层成为遮罩的图层,而它下面的图层即成为被遮盖的图层。1准备一幅配合诗词意境的图片作为背景(古色古香的水墨画当属首选),根据图片的尺寸设计Flash文件的大小(本文创建尺寸为333×438像素,背景为蓝色)。打开“文件”菜单,选择“导入”→“导入到舞台”命令把背…

  • Ajaxpro组件

    Ajaxpro组件这一篇我们来看一个开源的组件:ajaxpro。虽然这是一个比较老的组件,不过实现思想和源码还是值得我们学习的。通过上一篇的介绍,我们知道要调用页面对象的方法,就是靠反射来实现的,关键是整个处理过程,包括反射调用方法、参数映射等。ajaxpro不仅在后台帮我们实现了这个过程,在前台也封装了请求调用的方法,例如ajax的相关方法,用ajaxpro的方法就可以发送异步请求了,不需要自己封装js或者使用j…

  • Clip Converter – 视频在线下载方法

    Clip Converter – 视频在线下载方法ClipConverter-视频在线下载方法YTtoMP4&MP3Converter!1.VideoURLtoDownloadhttps://www.clipconverter.cc/2.Continue3.Start

  • java 利用Xstream注解生成和解析xml[通俗易懂]

    java 利用Xstream注解生成和解析xml[通俗易懂]java 利用Xstream注解生成和解析xml

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号