大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。
Jetbrains全家桶1年46,售后保障稳定
深度学习–迁移学习
在使用训练好的模型时,其中有一种保存的模型文件格式叫.npy。
打开方式·实现代码:
import numpy as np
test=np.load('./bvlc_alexnet.npy',encoding = "latin1") #加载文件
doc = open('1.txt', 'a') #打开一个存储文件,并依次写入
print(test, file=doc) #将打印内容写入文件中
模型文件(.npy)刨析:
import numpy as np
from numpy import * #使用numpy的属性且不需要在前面加上numpy
import tensorflow as tf
#模型文件(.npy)部分内容如下:由一个字典组成,字典中的每一个键对应一层网络模型参数。(包括权重w和偏置b)
a = {'conv1':[array([[1,2],[3,4]],dtype=float32),array([5,6],dtype=float32)],'conv2':[array([[1,2],[3,4]],dtype=float32),array([5,6],dtype=float32)]}
conv1_w = a['conv1'][0]
conv1_b = a['conv1'][1]
conv2_w = a['conv2'][0]
conv2_b = a['conv2'][1]
print(conv1_w)
print(tf.Variable(conv1_w))
print(conv1_b)
print(tf.Variable(conv1_b))
结果:
[[ 1. 2.]
[ 3. 4.]]
<tf.Variable ‘Variable:0’ shape=(2, 2) dtype=float32_ref>
[ 5. 6.]
<tf.Variable ‘Variable_1:0’ shape=(2,) dtype=float32_ref>
python-读取和保存npy文件
import numpy as np
# .npy文件是numpy专用的二进制文件
arr = np.array([[1, 2], [3, 4]])
# 保存.npy文件
np.save("../data/arr.npy", arr)
print("save .npy done")
# 读取.npy文件
np.load("../data/arr.npy")
print(arr)
print("load .npy done")
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/200777.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...