conv2d卷积核_子集卷积

conv2d卷积核_子集卷积学习torch框架中的卷积神经网络,对此进行记录一、nn.Conv2dnn.Conv2d(self,in_channels,out_channels,kernel_size,stride=1,padding=0,dilation=1,groups=1,bias=True))参数:in_channel:输入数据的通道数,例RGB图片通道数为3;out_channel:输…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全家桶1年46,售后保障稳定

学习torch框架中的卷积神经网络,对此进行记录

一、nn.Conv1d

一维的卷积能处理多维数据

  1. nn.Conv2d(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True))
    参数:
      in_channel: 输入数据的通道数,例RGB图片通道数为3;
      out_channel: 输出数据的通道数,这个根据模型调整;
      kennel_size: 卷积核大小,可以是int,或tuple;kennel_size=2,意味着卷积大小2, kennel_size=(2,3),意味着卷积在第一维度大小为2,在第二维度大小为3;
      stride:步长,默认为1,与kennel_size类似,stride=2,意味在所有维度步长为2, stride=(2,3),意味着在第一维度步长为2,意味着在第二维度步长为3;
      padding: 零填充
  2. 例子
import torch
import torch.nn as nn
import torch.nn.functional as F

x = torch.randn(10, 16, 30, 32, 34)
# batch, channel , height , width
print(x.shape)
class Net_1D(nn.Module):
    def __init__(self):
        super(Net_1D, self).__init__()
        self.layers = nn.Sequential(
            nn.Conv1d(in_channels=16, out_channels=16, kernel_size=(3, 2, 2), stride=(2, 2, 1), padding=[2,2,2]),
            nn.ReLU()
        )
    def forward(self, x):
        output = self.layers(x)
        log_probs = F.log_softmax(output, dim=1)
        return  log_probs

n = Net_1D()  # in_channel,out_channel,kennel,
print(n)
y = n(x)
print(y.shape)

Jetbrains全家桶1年46,售后保障稳定

结果:

torch.Size([10, 16, 30, 32, 34])
Net_1D(
  (layers): Sequential(
    (0): Conv1d(16, 16, kernel_size=(3, 2, 2), stride=(2, 2, 1), padding=[2, 2, 2])
    (1): ReLU()
  )
)
torch.Size([10, 16, 16, 18, 37])
  1. 卷积计算
    d = (d – kennel_size + 2 * padding) / stride + 1
    x = ([10,16,30,32,34]),其中第一维度:30,第一维度,第二维度:32,第三维度:34,对于卷积核长分别是;对于步长分别是第一维度:2,第二维度:,2,第三维度:1;对于padding分别是:第一维度:2,第二维度:,2,第三维度:2;
    d1 = (30 – 3 + 22)/ 2 +1 = 31/2 +1 = 15+1 =16
    d2 = (32 – 2 + 2
    2)/ 2 +1 = 34/2 +1 = 17+1 =18
    d3 = (34 – 2 + 2*2)/ 1 +1 = 36/1 +1 = 36+1 =37
    batch = 10, out_channel = 16

故:y = [10, 16, 16, 18, 37]

二、nn.Conv2d

二维卷积可以处理二维数据

  1. nn.Conv2d(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True))
    参数:
      in_channel: 输入数据的通道数,例RGB图片通道数为3;
      out_channel: 输出数据的通道数,这个根据模型调整;
      kennel_size: 卷积核大小,可以是int,或tuple;kennel_size=2,意味着卷积大小(2,2), kennel_size=(2,3),意味着卷积大小(2,3)即非正方形卷积
      stride:步长,默认为1,与kennel_size类似,stride=2,意味着步长上下左右扫描皆为2, stride=(2,3),左右扫描步长为2,上下为3;
      padding: 零填充
  2. 例子
    输入数据X[10,16,30,32],其分别代表:10组数据,通道数为16,高度为30,宽为32
import torch
import torch.nn as nn

x = torch.randn(10, 16, 30, 32) # batch, channel , height , width
print(x.shape)
m = nn.Conv2d(16, 33, (3, 2), (2,1))  # in_channel, out_channel ,kennel_size,stride
print(m)
y = m(x)
print(y.shape)

结果:

torch.Size([10, 16, 30, 32])
Conv2d(16, 33, kernel_size=(3, 2), stride=(2, 1))
torch.Size([10, 33, 14, 31])

3.卷积计算过程:
h/w = (h/w – kennel_size + 2padding) / stride + 1
x = ([10,16,30,32]),其中h=30,w=32,对于卷积核长分别是 h:3,w:2 ;对于步长分别是h:2,w:1;padding默认0;
h = (30 – 3 + 2
0)/ 2 +1 = 27/2 +1 = 13+1 =14
w =(32 – 2 + 2*0)/ 1 +1 = 30/1 +1 = 30+1 =31
batch = 10, out_channel = 33
故: y= ([10, 33, 14, 31])

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/198623.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • Linux安装程序Anaconda分析

    Linux安装程序Anaconda分析

  • mysql中字符转数字_MySQL字符串与数字互转

    mysql中字符转数字_MySQL字符串与数字互转MySQL获得当前系统日期时间函数01.获得当前日期+时间(date+time)函数:now()SELECTNOW();–2010-04-1517:55:3902.获得当前日期(date)函数:curdate()SELECTCURDATE();–2010-04-1503.获得当前时间(time)函数:curtime()SELECTCURTIME();–1…

  • MybatisPlus 分布式Id

    MybatisPlus 分布式Id对于分布式id,有很多方案,现在大多数用的是基于雪花算法snowflake的实现,美团有leaf,百度有uid-generator,我这里记录下苞米豆在MybatisPlus3中的分布式id实现简单介绍下雪花算法雪花算法也叫雪花id,是一个64bit的整型数据,原生的snowflake是这样的:最高位不用,41bit保存时间戳,单位是毫秒,10bit的机器位,12bit的唯一序列号,可以理解是某一毫秒内,某台机器生成了不重复的序列号10bit一般一会分为5bit的datacen

    2022年10月30日
  • C语言实现约分最简分式[通俗易懂]

    C语言实现约分最简分式[通俗易懂]题目要求:分数可以表示为分子/分母的形式。编写一个程序,要求用户输入一个分数,然后将其约分为最简分式。最简分式是指分子和分母不具有可以约分的成分了。如6/12可以被约分为1/2。当分子大于分母时,不需要表达为整数又分数的形式,即11/8还是11/8;而当分子分母相等时,仍然表达为1/1的分数形式。输入格式:输入在一行中给出一个分数,分子和分母中间以斜杠/分隔,如:12/34表示34分之12。…

    2022年10月25日
  • mysql数据库批量插百万数据_sql数据库怎样批量添加数据

    mysql数据库批量插百万数据_sql数据库怎样批量添加数据DELIMITER$DROPPROCEDUREifEXISTSpro_batch_insert$CREATEPROCEDUREpro_batch_insert(INinsert_numINT)BEGINDECLAREiINTDEFAULT1;WHILEi<=insert_numDOINSERTINTOadmin(username,`password`)VALUES(CONCAT(‘Rose’,i),’666′);.

  • scrapy下载图片报[scrapy.downloadermiddlewares.robotstxt] DEBUG: Forbidden by robots.txt:错误[通俗易懂]

    scrapy下载图片报[scrapy.downloadermiddlewares.robotstxt] DEBUG: Forbidden by robots.txt:错误[通俗易懂]本文转自:http://blog.csdn.net/zzk1995/article/details/51628205先说结论,关闭scrapy自带的ROBOTSTXT_OBEY功能,在setting找到这个变量,设置为False即可解决。使用scrapy爬取淘宝页面的时候,在提交http请求时出现debug信息Forbiddenbyrobots.txt,看来是请求被拒绝了。…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号