python机器视觉opencv_opencv轻松入门:面向python电子版

python机器视觉opencv_opencv轻松入门:面向python电子版以下是快速学完OpenCV+python计算机视觉图像处理的个人总结。任何知识或者学科都不可能快速学会,一口吃不成大胖子,想要学会,只能一点一点积累。不积跬步无以至千里,不敲千遍无可能懂理。想要学会,不能光看,须知熟才能生巧,一定要多敲!一定要多敲!一定要多敲!视频链接请点击这里代码连接请点击这里,提取码:iukw看完视频一定要手动敲,不然最后只是眼睛会了,脑子和手却不会。以下是Windows、Linux、Mac深度学习环境搭建详细教程:1、windows搭建深度学习环境详细教程2、L

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

返回主目录

4 图像基本特效

4-1 图像特效介绍

图像特效分为以下几个,分别是:

  1. 灰度处理
  2. 底板效果
  3. 马赛克
  4. 毛玻璃效果
  5. 图像融合
  6. 图片蓝色
  7. 边缘检测
  8. 浮雕效果

4-2 图像灰度处理1

灰度处理常用方法:

  • 方法1,直接使用imread里面的参数,代码如下:
import cv2
src = cv2.imread('17.jpg', 1)
gray1 = cv2.imread('17.jpg', 0)
gray2 = cv2.imread('17.jpg', cv2.IMREAD_GRAYSCALE)
print(src.shape)
print(gray1.shape)
print(gray2.shape)
cv2.imshow('src', src)
cv2.imshow('gray1', gray1)
cv2.imshow('gray2', gray2)
cv2.waitKey(0)

运行结果如下:

(308, 204, 3)
(308, 204)
(308, 204)

在这里插入图片描述

  • 方法2,使用OpenCV里面的cvtColor将RGB图像转换为灰度图像,代码如下:
import cv2

src = cv2.imread('17.jpg', 1)
cv2.imshow('src', src)
gray = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
cv2.imshow('gray', gray)
cv2.waitKey(0)

运行结果如下:
在这里插入图片描述

4-3 图像灰度处理2

  • 方法3,将RGB3个维度的数相加除以3,这就是均值算法Average,代码如下:
import cv2
import numpy as np

img = cv2.imread('16.jpg', 1)
cv2.imshow('src', img)
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]

dst = np.zeros((height, width, 3), np.uint8)
for i in range(0, height):
    for j in range(0, width):
        (b, g, r) = img[i, j]
        gray = (int(b) + int(g) + int(r)) / 3
        dst[i, j] = np.uint8(gray)

cv2.imshow('dst', dst)
cv2.waitKey(0)

运行结果如下:
在这里插入图片描述

  • 方法4,使用特定公式gray = r0.299+g0.587+b*0.114将RGB图像转换为灰度图像,这公式叫做亮度算法Luminosity,除了亮度算法和均值算法求灰度图像,还有一种明度算法Lightness也是可以将彩色图像转换为灰度图像的。亮度算法代码如下:
import cv2
import numpy as np

img = cv2.imread('15.jpg', 1)
cv2.imshow('src', img)
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]

dst = np.zeros(imgInfo, np.uint8)

for i in range(0, height):
    for j in range(0, width):
        (b, g, r) = img[i, j]
        b = int(b)	# 这里如果不做取整,就会溢出,导致图像变得不伦不类
        g = int(g)
        r = int(r)
        gray = r * 0.299 + g * 0.587 + b * 0.114
        dst[i, j] = np.uint8(gray)
cv2.imshow('dst', dst)
cv2.waitKey(0)

运行结果如下:
在这里插入图片描述

  • 方法5,使用明度算法Lightness将彩色图像转换为灰度图像,代码如下:
import cv2
import numpy as np

img = cv2.imread('14.jpg', 1)
cv2.imshow('src', img)
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]

dst = np.zeros(imgInfo, np.uint8)  # 新建一个空模板

for i in range(0, height):
    for j in range(0, width):
        b, g, r = img[i, j]
        b = int(b)
        g = int(g)
        r = int(r)
        gray = (max(r, g, b) + min(r, g, b)) / 2
        dst[i, j] = np.uint8(gray)

cv2.imshow('dst', dst)
cv2.waitKey(0)

运行结果如下:
在这里插入图片描述

以下将Luminosity(亮度)、Lightness(明度)、Average(均值)三个算法公式列在下面:

Gray_Luminosity = R*0.299 + G*0.587 + B*0.114
Gray_Lightness = (max(R, G, B) + min(R, G, B)) / 2
Gray_Average = (R + G + B) / 3

4-4 算法优化

代码如下:

import cv2
import numpy as np
import datetime

img = cv2.imread('13.jpg')
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]
dst = np.zeros(imgInfo, np.uint8)
oldtime = datetime.datetime.now()
for i in range(0, height):
    for j in range(0, width):
        b, g, r = img[i, j]
        b = int(b)
        g = int(g)
        r = int(r)
        # r*0.299+g*0.587+b*0.114=((r*0.299+g*0.587+b*0.114)*2^2)*2^-2
        # =(r*1.196+g*2.348+b*0.456)*2^-2约等于(r*1+g*2+b*1)*2^-2
        # 进行二进制位移转换=(r+(b<<1)+b)>>2
        gray = (r + (b << 1) + b) >> 2
        dst[i, j] = np.uint8(gray)
newtime = datetime.datetime.now()
print('after optimize', newtime - oldtime)
cv2.imshow('dst', dst)
cv2.waitKey(0)

运行结果如下:

before optimize: 0:00:00.261156
after optimize: 0:00:00.203124

从运行结果可以看出,优化后的时间要比优化之前快那么一点点。

4-5 颜色反转

  1. 灰度图像反转

代码如下:

import cv2
import numpy as np

img = cv2.imread('12.jpg', 1)
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
cv2.imshow('gray', gray)
dst = np.zeros(gray.shape, np.uint8)
dst2 = np.zeros((height, width, 1), np.uint8)

for i in range(0, height):
    for j in range(0, width):
        grayPixel = gray[i, j]
        dst[i, j] = 255 - grayPixel

cv2.imshow('dst', dst)
cv2.waitKey(0)

运行结果如下:
在这里插入图片描述

  1. 彩色图像反转

代码如下:

import cv2
import numpy as np

img = cv2.imread('12.jpg', 1)
# cv2.imshow('img', img)
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]
dst = np.zeros(img.shape, np.uint8)
dst2 = np.zeros((height, width, 3), np.uint8)

for i in range(0, height):
    for j in range(0, width):
        b, g, r = img[i, j]
        b2 = int(b)
        g2 = int(g)
        r2 = int(r)
        dst[i, j] = (255 - b, 255 - g, 255 - r)
        dst2[i, j] = (255 - b2, 255 - g2, 255 - r2)

cv2.imshow('dst', dst)
cv2.imshow('dst2', dst2)
cv2.waitKey(0)

运行结果如下:
在这里插入图片描述

4-6 马赛克

源代码如下:

import cv2

img = cv2.imread('17.jpg', 1)
cv2.imshow('img', img)

imgInfo = img.shape
print(imgInfo)

height = imgInfo[0]
width = imgInfo[1]

for m in range(140, 180):  # 高,选取图像(100,140)->(150,180)这片区域
    for n in range(100, 150):  # 宽
        if m % 10 == 0 and n % 10 == 0:  # 针对这片区域的10*10小方格进行筛选
            for i in range(0, 10):
                for j in range(0, 10):
                    b, g, r = img[m, n]  # 选择在m->n这个区域的原图像
                    img[i + m, j + n] = b, g, r  # 将m->n这个区域的原图像每一块10*10区域和第一个位置的相同
cv2.imshow('dst', img)
cv2.waitKey(0)

运行结果如下:
在这里插入图片描述

4-7 毛玻璃

代码如下:

import cv2
import numpy as np

img = cv2.imread('1.jpg', 1)
cv2.imshow('img', img)
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]
dst = np.zeros((height, width, 3), np.uint8)
mn = 6
for m in range(0, height - mn):  # 为了防止溢出需要减去6
    for n in range(0, width - mn):
        index = int(np.random.random() * 6)
        dst[m, n] = img[m + index, n + index]

cv2.imshow('dst', dst)
cv2.waitKey(0)

运行结果如下:
在这里插入图片描述

4-8 图片融合

代码如下:

# dst = src1 * α + src2 * (1 - α)
import cv2
import numpy as np

img1 = cv2.imread('1.jpg')
img2 = cv2.imread('2.jpg')
img1Info = img1.shape
height = img1Info[0]
width = img1Info[1]

# ROI # 这个要不要无所谓
# roiH = int(height * 0.5)
# roiW = int(width * 0.5)
# img1ROI = img1[0:roiH, 0:roiW]
# img2ROI = img2[0:roiH, 0:roiW]

# dst
dst = np.zeros((height, width, 3), np.uint8)
# dst2 = np.zeros((roiH, roiW, 3), np.uint8)
dst = cv2.addWeighted(img1, 0.4, img2, 0.6, 0)
# dst2 = cv2.addWeighted(img1ROI, 0.5, img1ROI, 0.5, 0)
cv2.imshow('dst', dst)
# cv2.imshow('dst2', dst2)
cv2.waitKey(0)

运行结果如下:
在这里插入图片描述

4-9 边缘检测1

这里讲的边缘检测算子是Canny算子,Canny 的目标是找到一个最优的边缘检测算法,其原型为:

edge = cv2.Canny(image, threshold1, threshold2[, edges[, apertureSize[, L2gradient ]]]) 

必要参数:

  • 第一个参数是需要处理的原图像,该图像必须为单通道的灰度图;
  • 第二个参数是低阈值,小于这个值时,像素值排除 ;
  • 第三个参数是高阈值,大于这个值时,像素值保留为边缘像素;
  • 注:当像素值位于两个阈值中间时,该像素仅仅在连接到一个高于高阈值的像素时被保留。

代码如下:

import cv2

# 边缘检测分为3个步骤:1.BGR2Gray;2.GaussianBlur;3.Canny
img = cv2.imread('3.jpg')
cv2.imshow('img', img)
# 1.将彩色图像转换为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 2.将灰度图像通过高斯滤波进行平滑处理
gauss = cv2.GaussianBlur(gray, (5, 5), 0)  # 核大小必须是奇数,最后一个参数0代表高斯核标准偏差
# 3.利用Canny算子检测出边缘
dst = cv2.Canny(gauss, 100, 110)  # 第二个和第三个是最小最大阈值,一般都是经验值
cv2.imshow('canny', dst)
cv2.waitKey(0)

运行结果如下:
在这里插入图片描述

4-10 边缘检测2

这里使用边缘检测算子是Soble算子,Sobel 算子是一个主要用作边缘检测的离散微分算子 (discrete differentiation operator)。Sobel算子结合了高斯平滑和微分求导,用来计算图像灰度函数的近似梯度。

代码如下:

import cv2
import numpy as np
import math
img = cv2.imread('5.jpg', 1)
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]
cv2.imshow('src', img)
# sobel:1.算子模板;2.图片卷积;3.阈值判决
# [1 2 1 [ 1 0 -1
# 0 0 0 2 0 -2
# -1 -2 -1 ] 1 0 -1 ]
# [1 2 3 4] [a b c d] a*1+b*2+c*3+d*4 = dst
# sqrt(a*a+b*b) = f>th
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
dst = np.zeros((height, width, 1), np.uint8)
for i in range(0, height - 2):  # 因为卷积核实3*3,这里需要减去2,要不会造成数据溢出
for j in range(0, width - 2):
gy = gray[i, j] * 1 + gray[i, j + 1] * 2 + gray[i, j + 2] * 1 - gray[i + 2, j] * 1 - gray[i + 2, j + 1] * 2 - \
gray[i + 2, j + 2] * 1  # 垂直变化:将灰度图像与3*3内核进行卷积
gx = gray[i, j] + gray[i + 1, j] * 2 + gray[i + 2, j] - gray[i, j + 2] - gray[i + 1, j + 2] * 2 - gray[
i + 2, j + 2]  # 水平变化:将灰度图像与3*3内核进行卷积
grad = math.sqrt(gx * gx + gy * gy)  # 这里用G=sqrt(Gx^2+Gy^2)来求近似梯度
grad = math.fabs(gx) + math.fabs(gy)  # 也可以用G=|Gx|+|Gy|求近似梯度
if grad > 100:  # 大于100的设置为边缘,值越小检测的边缘越浓密
dst[i, j] = 255  # 255为白色
else:  # 小于100的不是边缘
dst[i, j] = 0  # 0为黑色
cv2.imshow('dst', dst)
cv2.waitKey(0)

运行结果如下:
在这里插入图片描述

4-11 浮雕效果

运行代码如下:

import cv2
import numpy as np
img = cv2.imread('7.jpg', 1)
cv2.imshow('img', img)
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# newP = grayP0 - grayP1 + 150
dst = np.zeros((height, width, 1), np.uint8)
for i in range(0, height):
for j in range(0, width - 1):
grayP0 = int(gray[i, j])
grayP1 = int(gray[i, j + 1])
newP = grayP0 - grayP1 + 150
if newP > 255:
newP = 255
if newP < 0:
newP = 0
dst[i, j] = newP
cv2.imshow('dst', dst)
cv2.waitKey(0)

运行结果如下:
在这里插入图片描述

4-12 颜色映射

代码如下:

import cv2
import numpy as np
img = cv2.imread('8.jpg', 1)
cv2.imshow('src', img)
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]
dst = np.zeros((height, width, 3), np.uint8)
for i in range(0, height):
for j in range(0, width):
(b, g, r) = img[i, j]
b = 1.1 * b
g = 1.1 * g
r = 6.6 * r
if b > 255:
b = 255
if g > 255:
g = 255
if r > 255:
r = 255
dst[i, j] = (b, g, r)
cv2.imshow('dst', dst)
cv2.waitKey(0)

运行结果如下:
在这里插入图片描述
哈哈哈,给我们的小姐姐染了个红发

4-13 油画特效

优化特效步骤如下:

  1. 彩色图片转换为灰度图片;
  2. 将图片分割为若干个小方块,统计这些小方块中每一个像素的灰度值(eg:77或者1010的小方块);
  3. 将0~255划分为几个等级,将第二步的结果映射过来分为不同的等级段中,
  4. 找到每个方块中灰度等级最多的像素,并且求取像素的均值。
  5. 将统计出来的平均值替换原来的像素值,最终来实现优化效果
    代码如下:
import cv2
import numpy as np
img = cv2.imread('6.jpg', 1)
cv2.imshow('img', img)
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
dst = np.zeros((height, width, 3), np.uint8)
for i in range(4, height - 4):
for j in range(4, width - 4):
array1 = np.zeros(8, np.uint8)
for m in range(-4, 4):
for n in range(-4, 4):
p1 = int(gray[i + m, j + n] / 32)
array1[p1] = array1[p1] + 1
currentMax = array1[0]
l = 0
for k in range(0, 8):
if currentMax < array1[k]:
currentMax = array1[k]
l = k
# 简化 均值
for m in range(-4, 4):
for n in range(-4, 4):
if (gray[i + m, j + n] >= (l * 32)) and (gray[i + m, j + n] <= ((l + 1) * 32)):
(b, g, r) = img[i + m, j + n]
dst[i, j] = (b, g, r)
cv2.imshow('dst', dst)
cv2.waitKey(0)

运行结果如下:

在这里插入图片描述

4-14 线段绘制

绘制线段要用到cv2.line()函数,函数原型为img=cv.line(img, pt1, pt2, color[, thickness[, lineType[, shift]]]),主要参数如下:

  • img:源图像
  • pt1:直线起点
  • pt2:直线终点
  • color:需要传入的颜色
  • thickness:线条的粗细,默认值是1
  • linetype:线条的类型,8 连接,抗锯齿等。默认情况是 8 连接。cv2.LINE_AA 为抗锯齿,这样看起来会非常平滑。

代码如下:

import cv2
img = cv2.imread('9.jpg', 1)
cv2.imshow('img', img)
# 绘制线段 1.dst;2.begin;3.end;4.color;5.width;6.type
cv2.line(img, (260, 150), (350, 180), (0, 255, 0), 18, cv2.LINE_AA)
# 绘制三角形
cv2.line(img, (300, 450), (200, 380), (0, 255, 255), 38, cv2.LINE_AA)
cv2.line(img, (200, 380), (400, 380), (0, 255, 255), 38, cv2.LINE_AA)
cv2.line(img, (400, 380), (300, 450), (0, 255, 255), 38, cv2.LINE_AA)
cv2.imshow('img', img)
cv2.waitKey(0)

运行结果如下:
在这里插入图片描述

4-15 矩形圆形任意多边形绘制

绘制圆形用到的是cv2.circle(),绘制椭圆用到的是cv2.ellipse(),绘制长方形用到的是cv2.rectangle()

cv2.polylines() 可以用来画很多条线。只把想画的线放在一 个列中将列传给函数就可以了。每条线会独立绘制。会比用 cv2.line() 一条一条的绘制快一些。

运行代码如下:

import cv2
import numpy as np
img = cv2.imread('00.jpg', 1)
# rectangle是来画矩形框的,其中:1.src;2.左上角;3.右下角;4.color;5.如果为-1,则fill,如果>0则表示line width
cv2.rectangle(img, (180, 300), (300, 400), (0, 255, 255), -1)
# circle是用来画圆的,其中:1.src;2.center;3.r;4.color,5.同rectangle
cv2.circle(img, (240, 160), 80, (0, 255, 0), 2)
# ellipse是用来画椭圆的,其中:1.src;2.中心坐标;3.长、短轴长度;4.椭圆旋转角度;5.6.椭圆弧起始和终止角度;7.color;8.线宽或填充
cv2.ellipse(img, (410, 130), (100, 70), 80, 0, 360, (0, 0, 255), 3)
# polylines画多边形
points = np.array([[358, 54], [385, 120], [357, 163], [401, 165], [433, 237],
[440, 165], [485, 166], [442, 119], [442, 28], [411, 84]],
np.int32)  # 这个数组必须为int32
print(points.shape)  # (10, 2)
# 这里reshape的第一个参数为-1,表明这一维度的长度是根据后面的维度计算出来的
points = points.reshape((-1, 1, 2))
print(points.shape)  # (10, 1, 2)
# 1.src;2.point;3.True表示闭合的线,False不闭合;4.color;5.只有线宽,-1报错不会填充
cv2.polylines(img, [points], True, (0, 255, 255), 3)
cv2.imshow('img', img)
cv2.waitKey()

运行结果如下:
在这里插入图片描述

4-16 文字图片绘制

代码如下:

import cv2
img = cv2.imread('00.jpg', 1)
font = cv2.FONT_HERSHEY_SIMPLEX  # 文字的字体类型,FONT_HERSHEY_SIMPLEX表示正常大小无衬线字体
# putText显示文本,其中:1.src;2.text;3.org;4.font;5.text size;6.color;7.line width;8.style
cv2.putText(img, 'I Love You', (300, 350), font, 1, (255, 0, 0), 2, cv2.LINE_AA)
cv2.imshow('img', img)
cv2.waitKey(0)

运行结果如下:

在这里插入图片描述

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/197740.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

  • phpstorm2021最新激活码[在线序列号]

    phpstorm2021最新激活码[在线序列号],https://javaforall.cn/100143.html。详细ieda激活码不妨到全栈程序员必看教程网一起来了解一下吧!

  • pycharm配置pytorch的坑以及解决方案「建议收藏」

    pycharm配置pytorch的坑以及解决方案「建议收藏」1.好像不支持python3.8。直接从setting里面安装时不行的,按其它教程(https://blog.csdn.net/lyz21/article/details/104295042)从官网https://pytorch.org/get-started/locally/,拷贝链接用pip下载,一直报找不到版本。后来发现,python3.8的原因,改成python3.7可以了,但会一直连接超时。2.发现要下载的其实是这两个文件:点开下面的两个链接,用下载软件下载了,我下到了e盘,直接pip

  • 最新Java学习教程路线图(2021完整版)

    最新Java学习教程路线图(2021完整版)各样的编程语言不断崛起,但唯有Java是牢牢占据着老大的位置,目前几乎90%以上的大中型互联网应用系统在服务器端开发首选Java。因此,也是吸引了不少年轻人投入到Java的学习之中。但不得不说,Java作为老牌编程语言,学习起来还是需要系统才行的。不少小伙伴会通过在网络上找各种各样的学习视频去研究学习,却往往缺乏了系统全面的学习路线。本文所有Java视频资料可点击免费领取所以,今天就跟大家分享一份系统的Java学习教程路线图,零基础也可以无压力的走进Java,学习Java!第一阶段、Java基础J

  • 是学Java好呢?还是学C++更有前途?

    是学Java好呢?还是学C++更有前途?最近有不少初学编程的朋友问:他们比较倾向于Java和C++作为他们首选学习语言,但是学Java好呢?还是学C++更有前途?到底哪一门语言更有“钱途”呢?这个问题问的好,很多初学者都会有类似的疑问,今天我就来给大家简单的解答一下。1、C++和Java在编程排行榜中的排名作为IT行业的软件研发人员,在我看来,这两种语言都可以学,都很有前途。其实Java和C++一直名列世界编程语言排行榜的前几位,始终是热门的开发语言,下图是最近的世界编程语言排行榜:不管是从世界…

  • 量化投资学习——多因子权重组合优化问题

    量化投资学习——多因子权重组合优化问题关于多因子权重组合优化问题,这里首先整理若干链接供大家参考:pythonoptimize_Python与量化多因子——因子权重优化文章中从常见的因子合成方法,如静态权重,动态权重出发,拓展到了动态权重,介绍了最大化ICIR的缺点,介绍了cvxpy等工具包,包括常见的一些约束问题,文章还举了若干例子,比较好…

  • 关于大数据,云计算,物联网的概述正确的是_物联网应用领域

    关于大数据,云计算,物联网的概述正确的是_物联网应用领域1、大数据时代  以大数据、物联网和云计算为标志的第三次信息化浪潮开始,大数据时代全面开启。大数据发展主要经历了三个历程。2、大数据的概念  关于什么是大数据”这个问题,大家比较认可关于大数据的“4V”说法。大数据的4个“V”,或者说是大数据的4个特点,包含4个层面:数据量大(Volume).数据类型繁多(Variety).处理速度快(Velocity)和价值密度低(Value)。3、…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号