cbow模型详解_drude模型的三个基本假设

cbow模型详解_drude模型的三个基本假设初始化:初始化方法的参数包括词汇个数vocab_size和中间层的神经元个数hidden_size。首先生成两个权重(W_in和W_out),并用一些小的随机值初始化这两个权重。设置astype(‘f’),初始化将使用32位的浮点数。生成层:生成两个输入侧的MatMul层、一个输出侧的MatMul层,以及一个SoftmaxwithLoss层。保存权重和梯度:将该神经网络中使用的权重参数和梯度分别保存在列表类型的成员变量params和grads中。正向传播for.

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

在这里插入图片描述

初始化:初始化方法的参数包括词汇个数 vocab_size 和中间层的神经元个数 hidden_size。首先生成两个权重(W_in 和 W_out),并用一些小的随机值初始化这两个权重。设置astype(‘f’),初始化将使用 32 位的浮点数。

生成层:生成两个输入侧的 MatMul 层、一个输出侧的 MatMul 层,以及一个 Softmax with Loss 层。

保存权重和梯度:将该神经网络中使用的权重参数和梯度分别保存在列表类型的成员变量 params 和 grads 中。

正向传播 forward() 函数:该函数接收参数 contexts 和 target,并返回损失(loss)。这两个参数结构如下。

在这里插入图片描述

contexts 是一个三维 NumPy 数组,第 0 维的元素个数是 mini-batch 的数量,第 1 维的元素个数是上下文的窗口大小,第 2 维表示 one-hot 向量。下面这个代码取出来的是什么?

 h0 = self.in_layer0.forward(contexts[:, 0])
 h1 = self.in_layer1.forward(contexts[:, 1])

jym做了一个测试:

import sys
sys.path.append('..')
from common.util import preprocess #, create_co_matrix, most_similar
from common.util import create_contexts_target, convert_one_hot

text = 'You say goodbye and I say hello.'
corpus, word_to_id, id_to_word = preprocess(text)
contexts, target = create_contexts_target(corpus, window_size=1)
#print(contexts)
#print(target)
vocab_size = len(word_to_id)
target = convert_one_hot(target, vocab_size)
contexts = convert_one_hot(contexts, vocab_size)
print(contexts[:, 0])

输出:然后从输出就知道了,取的是不同target的左边的单词。

[[1 0 0 0 0 0 0]
 [0 1 0 0 0 0 0]
 [0 0 1 0 0 0 0]
 [0 0 0 1 0 0 0]
 [0 0 0 0 1 0 0]
 [0 1 0 0 0 0 0]]

反向传播 backward():神经网络的反向传播在与正向传播相反的方向上传播梯度。这个反向传播从 1 出发,并将其传向 Softmax with Loss 层。然后,将 Softmax with Loss 层的反向传播的输出 ds 传到输出侧的 MatMul 层。“×”的反向传播将正向传播时的输入值“交换”后乘以梯度。“+”的反向传播将梯度“原样”传播。

在这里插入图片描述

这个backward函数里面调用的是之前写好的层的反向传播函数,比如loss_layer.backward(dout),因此backward函数用完之后,各个权重参数的梯度就保存在了成员变量 grads 中(这是之前写的层里面的反向传播函数来实现的)。先调用 forward() 函数,再调用 backward() 函数,grads 列表中的梯度被更新。

import sys
sys.path.append('..')
import numpy as np
from common.layers import MatMul, SoftmaxWithLoss


class SimpleCBOW:
    def __init__(self, vocab_size, hidden_size):
        V, H = vocab_size, hidden_size

        # 初始化权重
        W_in = 0.01 * np.random.randn(V, H).astype('f')
        W_out = 0.01 * np.random.randn(H, V).astype('f')

        # 生成层
        self.in_layer0 = MatMul(W_in)
        self.in_layer1 = MatMul(W_in)
        self.out_layer = MatMul(W_out)
        self.loss_layer = SoftmaxWithLoss()

        # 将所有的权重和梯度整理到列表中
        layers = [self.in_layer0, self.in_layer1, self.out_layer]
        self.params, self.grads = [], []
        for layer in layers:
            self.params += layer.params
            self.grads += layer.grads

        # 将单词的分布式表示设置为成员变量
        self.word_vecs = W_in

    def forward(self, contexts, target):
        h0 = self.in_layer0.forward(contexts[:, 0])
        h1 = self.in_layer1.forward(contexts[:, 1])
        h = (h0 + h1) * 0.5
        score = self.out_layer.forward(h)
        loss = self.loss_layer.forward(score, target)
        return loss

    def backward(self, dout=1):
        ds = self.loss_layer.backward(dout)
        da = self.out_layer.backward(ds)
        da *= 0.5
        self.in_layer1.backward(da)
        self.in_layer0.backward(da)
        return None
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/196424.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • strtok函数与函数用法实例

    strtok函数与函数用法实例strtok函数简介及运用实例(利用strtok函数分割字符串及单词逆序)

    2022年10月24日
  • YOLO3训练自己数据(超详细步骤)

    YOLO3训练自己数据(超详细步骤)须知:对于占比较小的目标检测效果不好,虽然每个格子可以预测多个boundingbox,但是最终只选择IOU(预测的矩形框和真实目标的交集与并集之比)最高的boundingbox作为物体检测输出,即每个格子最多只预测出一个物体。当一个格子中包含多个物体时,如鸟群等,却只能检测出其中一个。另外,YOLO对车牌识别的效果一般。一:下载YOLO3项目gitclonehttps://githu…

  • Java和JavaScript之间的区别

    Java和JavaScript之间的区别1.简介我们将在本文中比较Java语言和JavaScript语言。JavaScript由Netscape开发。它最初是用于客户端的脚本语言,后来又用作客户端和服务器脚本的语言。Java由JamesGosling由SunMicrosystems开发。这些天来,JavaScript在服务器中以node.js的形式使用。Java和JavaScript之间在程序编码,编译和运行方式方…

  • django的drf框架的优点_道德经的理解与感悟

    django的drf框架的优点_道德经的理解与感悟Django是基于Python编程语言开发的一套重量级的用于web开发的框架所谓web开发框架,就是基于网络通信原理,为了便于开发,对代码流进行了统一的封装和集成Django是对Python的封装,而DRF又在Django的基础上做了进一步的封装相较于Django,DRF更加适用于前后端分离的开发模式Django自带template模板,最终会生成一个html页面。而DRF通过序列化器和丰富的视图类,向服务器提交json格式的数据。…

    2022年10月24日
  • Springboot将项目打成jar包

    Springboot将项目打成jar包1、在Maven项目中添加依赖<build> <plugins> <plugin> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot…

  • 嵌入式学习步骤[通俗易懂]

    嵌入式学习步骤[通俗易懂]作者:李Brooks链接:https://www.zhihu.com/question/22252234/answer/75026117来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。占坑先。——————————————————————-第一次修改咯。不请自来。做电赛…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号