大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。
Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺
实验五用matlab求二元函数及极值
实验五?? 用matlab求二元函数的极值
?
1.计算二元函数的极值
对于二元函数的极值问题,根据二元函数极值的必要和充分条件,可分为以下几个步骤:
步骤1.定义二元函数.
步骤2.求解方程组,得到驻点.
步骤3.对于每一个驻点,求出二阶偏导数
步骤4. 对于每一个驻点,计算判别式,如果,则该驻点是极值点,当为极小值, 为极大值;如果,需进一步判断此驻点是否为极值点; 如果则该驻点不是极值点.
2.计算二元函数在区域D内的最大值和最小值
设函数在有界区域上连续,则在上必定有最大值和最小值。求在上的最大值和最小值的一般步骤为:
步骤1. 计算在内所有驻点处的函数值;
步骤2. 计算在的各个边界线上的最大值和最小值;
步骤3. 将上述各函数值进行比较,最终确定出在内的最大值和最小值。
3.函数求偏导数的MATLAB命令
MATLAB中主要用diff求函数的偏导数,用jacobian求Jacobian矩阵。
?
?
diff(f,x,n)? 求函数f关于自变量x的n阶导数。
jacobian(f,x) 求向量函数f关于自变量x(x也为向量)的jacobian矩阵。可以用help diff, help jacobian查阅有关这些命令的详细信息
例1? 求函数的极值点和极值.
首先用diff命令求z关于x,y的偏导数
>>clear;? syms x y;
>>z=x^4-8*x*y+2*y^2-3;
>>diff(z,x)
>>diff(z,y)
结果为
ans =4*x^3-8*y
??? ans =-8*x+4*y
即再求解方程,求得各驻点的坐标。一般方程组的符号解用solve命令,当方程组不存在符号解时,solve将给出数值解。求解方程的MATLAB代码为:
>>clear;
>>[x,y]=solve(‘4*x^3-8*y=0′,’-8*x+4*y=0′,’x’,’y’)
结果有三个驻点,分别是P(-2,-4),Q(0,0),R(2,4).下面再求判别式中的二阶偏导数:
>>clear;? syms x y;
>>z=x^4-8*x*y+2*y^2-3;
>>A=diff(z,x,2)
>>B=diff(diff(z,x),y)
>>C=diff(z,y,2)
结果为
A=2*x^2
B =-8
??? C =4
由判别法可知和都是函数的极小值点,而点Q(0,0)不是极值点,实际上,和是函数的最小值点。当然,我们可以通过画函数图形来观测极值点与鞍点。
>>clear;
>>x=-5:0.2:5;? y=-5:0.2:5;
>>[X,Y]=meshgrid(x,y);
>>Z=X.^4-8*X.*Y+2*Y.^2-3;
>>mesh(X,Y,Z)
>>xlabel(‘x’),ylabel(‘y’),zlabel(‘z’)
结果如图16.5.1
?
图16.5.1? 函数曲面图
可见在图6.1中不容易观测极值点,这是因为z的取值范围为[-500,100],是一幅远景图,局部信息丢失较多,观测不到图像细节.可以通过画等值线来观测极值.
>>contour(X,Y,Z, 600)
>>xlabel(‘x’),ylabel(‘y’)
结果如图16.5.2
图16.5.2? 等值线图
由图16.5.2可见,随着图形灰度的逐渐变浅,函数值逐渐减小,图形中有两个明显的极小值点和.根据提梯度与等高线之间的关系,梯度的方向是等高线的法方向,且指向函数增加的方向.由此可知,极值点应该有等高线环绕,而点周围没有等高线环绕,不是极值点,是鞍点.
例2 求函数在条件下的极值..构造Lagrange函数
求Lagrange函数的自由极值.先求关于的一阶偏导数
>>clear; syms x y k
>>l=x*y+k*(x+y-1);
>>diff(l,x)
>>diff(l,y)
>>diff(l,k)
得再解方程
>>clear; syms x y k
>>[x,y,k]=solve(‘y+k=0′,’x+k=0′,’x+y-1=0′,’x’,’y’,’k’)
得进过判断,此点为函数的极大值点,此时函数达到最大值.
?
例3 抛物面被平面截成一个椭圆,求这个椭圆到原点的最长与最短距离.
这个问题实际上就是求函数
在条件及下的最大值和最小值问题.构造Lagrange函数
求Lagrange函数的自由极值.先求关于的一阶偏导数
>>clear; syms x y z u v
>>l=x^2+y^2+z^2+u*(x^2+y^2-z)+v*(x+y+z-1);
>>diff(l,x)
>>diff(l,y)
>>diff(l,z)
>>diff(l,u)
>>diff(l,v)
得
再解方程
>>clear;
>>[x,y,z,u,v]=solv
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/196397.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...