Java读取pkl文件_theano csv到pkl文件

Java读取pkl文件_theano csv到pkl文件我正在尝试将一个pkl文件从csv起点加载到theano中importnumpyasnpimportcsvimportgzip,cPicklefromnumpyimportgenfromtxtimporttheanoimporttheano.tensorasT#OpencsvfileandreadindatacsvFile=”filename.csv”my…

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

我正在尝试将一个pkl文件从csv起点加载到theano中

import numpy as np

import csv

import gzip, cPickle

from numpy import genfromtxt

import theano

import theano.tensor as T

#Open csv file and read in data

csvFile = “filename.csv”

my_data = genfromtxt(csvFile, delimiter=’,’, skip_header=1)

data_shape = “There are ” + repr(my_data.shape[0]) + ” samples of vector length ” + repr(my_data.shape[1])

num_rows = my_data.shape[0] # Number of data samples

num_cols = my_data.shape[1] # Length of Data Vector

total_size = (num_cols-1) * num_rows

data = np.arange(total_size)

data = data.reshape(num_rows, num_cols-1) # 2D Matrix of data points

data = data.astype(‘float32’)

label = np.arange(num_rows)

print label.shape

#label = label.reshape(num_rows, 1) # 2D Matrix of data points

label = label.astype(‘float32’)

print data.shape

#Read through data file, assume label is in last col

for i in range(my_data.shape[0]):

label[i] = my_data[i][num_cols-1]

for j in range(num_cols-1):

data[i][j] = my_data[i][j]

#Split data in terms of 70% train, 10% val, 20% test

train_num = int(num_rows * 0.7)

val_num = int(num_rows * 0.1)

test_num = int(num_rows * 0.2)

DataSetState = “This dataset has ” + repr(data.shape[0]) + ” samples of length ” + repr(data.shape[1]) + “. The number of training examples is ” + repr(train_num)

print DataSetState

train_set_x = data[:train_num]

train_set_y = label[:train_num]

val_set_x = data[train_num+1:train_num+val_num]

val_set_y = label[train_num+1:train_num+val_num]

test_set_x = data[train_num+val_num+1:]

test_set_y = label[train_num+val_num+1:]

# Divided dataset into 3 parts. split by percentage.

train_set = train_set_x, train_set_y

val_set = val_set_x, val_set_y

test_set = test_set_x, val_set_y

dataset = [train_set, val_set, test_set]

f = gzip.open(csvFile+’.pkl.gz’,’wb’)

cPickle.dump(dataset, f, protocol=2)

f.close()

当我通过Thenao(作为DBN或SdA)运行生成的pkl文件时,它预先训练得很好,这让我觉得数据存储正确 .

但是,当涉及到微调时,我收到以下错误:

epoch 1, minibatch 2775/2775, validation error 0.000000 %

Traceback (most recent call last):

File “SdA_custom.py”, line 489, in

test_SdA()

File “SdA_custom.py”, line 463, in test_SdA

test_losses = test_model()

File “SdA_custom.py”, line 321, in test_score

return [test_score_i(i) for i in xrange(n_test_batches)]

File “/usr/local/lib/python2.7/dist-packages/theano/compile/function_module.py”, line 606, in __call__

storage_map=self.fn.storage_map)

File “/usr/local/lib/python2.7/dist-packages/theano/compile/function_module.py”, line 595, in __call__

outputs = self.fn()

ValueError: Input dimension mis-match. (input[0].shape[0] = 10, input[1].shape[0] = 3)

Apply node that caused the error: Elemwise{neq,no_inplace}(argmax, Subtensor{int64:int64:}.0)

Inputs types: [TensorType(int64, vector), TensorType(int32, vector)]

Inputs shapes: [(10,), (3,)]

Inputs strides: [(8,), (4,)]

Inputs values: [‘not shown’, array([0, 0, 0], dtype=int32)]

Backtrace when the node is created:

File “/home/dean/Documents/DeepLearningRepo/DeepLearningTutorials-master/code/logistic_sgd.py”, line 164, in errors

return T.mean(T.neq(self.y_pred, y))

HINT: Use the Theano flag ‘exception_verbosity=high’ for a debugprint and storage map footprint of this apply node.

10是我的批次的大小,如果我改为批量大小为1,我得到以下内容:

ValueError: Input dimension mis-match. (input[0].shape[0] = 1, input[1].shape[0] = 0)

我认为我在制作pkl时错误地存储了标签,但我似乎无法发现正在发生的事情或为什么更改批处理会改变错误

希望你能帮忙!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/195494.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • 基于MVP架构设计ASP.Net的应用研究

    基于MVP架构设计ASP.Net的应用研究

  • 嵌入式linux单片机视频教程下载从入门到精通分享「建议收藏」

    嵌入式linux单片机视频教程下载从入门到精通分享「建议收藏」嵌入式linux单片机视频教程下载从入门到精通分享教程下载地址

  • FileInputStream概述[通俗易懂]

    FileInputStream概述[通俗易懂]一FileInputStream概述FileInputStream:从文件系统中的文件获取输入字节。可用的文件取决于主机环境。FileInputStream用于读取诸如图像数据的原始字节流。要读取字符流,请考虑使用FileReader。二FileInputStream的构造方法1.FileInputStream(Filefile)通过打开与实际文件的连接来创建FileInputStream,该文件由文件系统中的File对象file命名。2.FileInputSt…

  • KETTLE教程:转换

    KETTLE教程:转换所谓的转换,可以理解为将数据开中的数据转换为excel表格,txt文档,.bat等格式输出;将excel表格,txt文档,.bat等格式转换成数据库中表格的数据。kettle的转换功能十分便捷,大大减少了我们的工作量。下面开始介绍如何使用kettle进行转换:以文本转换为mysql数据表为例首先,点击文件:在文件中新建→转换然后,点击转换下的DB转换:选择要转换成什么数据…

  • 记录关于我与SCOM的事情

    记录关于我与SCOM的事情

  • 数据挖掘的9大成熟技术和应用

    数据挖掘的9大成熟技术和应用http://ihoge.cn/2018/DataMining.html数据挖掘的9大成熟技术和应用基于数据挖掘的9大主要成熟技术以及在数据化运营中的主要应用:1、决策树2、神经网络3、回归4、关联规则5、聚类6、贝叶斯分类7、支持向量机8、主成分分析9、假设检验1 决策树决策树(DecisionTree)是一种非常成熟的、普遍采用的数据挖…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号