labelme怎么安装_putty安装教程

labelme怎么安装_putty安装教程Labelme安装教程(基于anaconda)1.创建anaconda虚拟环境labelmecondacreate-nlabelmepython=3.6完成之后如图所示(由于我已经创建了labelme故这里用labelme1代替)激活环境:condaactivatelabelme执行完这一步会发现运行环境转移到了labelme,如果没有重新创建2.安装labelme所需要的依赖环境安装的时候使用pip或者conda都可以,两者之中有一个不行时尝试使用另一个,我在安装的时

大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。

Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺

Labelme安装教程(基于anaconda)

1. 创建anaconda虚拟环境labelme

conda create -n labelme python=3.6

完成之后如图所示(由于我已经创建了labelme故这里用labelme1代替)
在这里插入图片描述
激活环境:

conda activate labelme

执行完这一步会发现运行环境转移到了labelme,如果没有重新创建

2. 安装labelme所需要的依赖环境

安装的时候使用pip或者conda都可以,两者之中有一个不行时尝试使用另一个,我在安装的时候也是时好时坏,有点玄学

conda install pyqt
conda install pillow

这两个库的安装可能还需要别的依赖环境,请读者自行查阅,这里不再赘述

3.安装labelme

conda install labelme=3.16.2
#conda安装命令如果出错也可以使用pip命令,使用逻辑等号"=="
pip install labelme==3.16.2

这一步一定要注意安装的版本号,如果直接安装labelme不标注版本号在后续json到dataset的时候会出现异常,一般来说3.16的版本都可以,至此安装过程就结束了,下面介绍labelme的使用方法。

4.使用labelme标注图片

在刚才安装好的窗口下输入labelme后便可打开labelme
在这里插入图片描述
界面如图
在这里插入图片描述
在使用过程中建议大家一打开文件(OpenDir)的方式读取图片,这样可以通过NextImage和PreImage键来查看前后的图片。打开图片之后,右键可以选择标注的工具,例如目标检测使用的矩形、heatmap使用的圆形以及关键点检测使用的点和线。
在这里插入图片描述
标注完之后点击save进行保存,注意:最好把标注完的json文件与原图存放在一个目录下,这样在后期查看的时候可以看到原图与标注区域的叠加,而不单单是原图。

5.Json To Dataset

得到json文件之后,我们要将其转化成数据集使用,这里涉及到labelme源码的更改
首先,找到labelme的json_to_dataset.py
找到anaconda的安装位置,例如我安装在D盘,然后找到下面说的具体位置:D:\Anaconda\envs\labelme\Lib\site-packages\labelme\cli,进入之后会发现有几个python source file,打开json_to_dataset.py,将代码做如下更改:

import argparse
import json
import os
import os.path as osp
import warnings
 
import PIL.Image
import yaml
 
from labelme import utils
import base64
 
def main():
    warnings.warn("This script is aimed to demonstrate how to convert the\n"
                  "JSON file to a single image dataset, and not to handle\n"
                  "multiple JSON files to generate a real-use dataset.")
    parser = argparse.ArgumentParser()
    parser.add_argument('json_file')
    parser.add_argument('-o', '--out', default=None)
    args = parser.parse_args()
 
    json_file = args.json_file
    if args.out is None:
        out_dir = osp.basename(json_file).replace('.', '_')
        out_dir = osp.join(osp.dirname(json_file), out_dir)
    else:
        out_dir = args.out
    if not osp.exists(out_dir):
        os.mkdir(out_dir)
 
    count = os.listdir(json_file) 
    for i in range(0, len(count)):
        path = os.path.join(json_file, count[i])
        if os.path.isfile(path):
            data = json.load(open(path))
            
            if data['imageData']:
                imageData = data['imageData']
            else:
                imagePath = os.path.join(os.path.dirname(path), data['imagePath'])
                with open(imagePath, 'rb') as f:
                    imageData = f.read()
                    imageData = base64.b64encode(imageData).decode('utf-8')
            img = utils.img_b64_to_arr(imageData)
            label_name_to_value = { 
   '_background_': 0}
            for shape in data['shapes']:
                label_name = shape['label']
                if label_name in label_name_to_value:
                    label_value = label_name_to_value[label_name]
                else:
                    label_value = len(label_name_to_value)
                    label_name_to_value[label_name] = label_value
            
            # label_values must be dense
            label_values, label_names = [], []
            for ln, lv in sorted(label_name_to_value.items(), key=lambda x: x[1]):
                label_values.append(lv)
                label_names.append(ln)
            assert label_values == list(range(len(label_values)))
            
            lbl = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value)
            
            captions = ['{}: {}'.format(lv, ln)
                for ln, lv in label_name_to_value.items()]
            lbl_viz = utils.draw_label(lbl, img, captions)
            
            out_dir = osp.basename(count[i]).replace('.', '_')
            out_dir = osp.join(osp.dirname(count[i]), out_dir)
            if not osp.exists(out_dir):
                os.mkdir(out_dir)
 
            PIL.Image.fromarray(img).save(osp.join(out_dir, 'img.png'))
            #PIL.Image.fromarray(lbl).save(osp.join(out_dir, 'label.png'))
            utils.lblsave(osp.join(out_dir, 'label.png'), lbl)
            PIL.Image.fromarray(lbl_viz).save(osp.join(out_dir, 'label_viz.png'))
 
            with open(osp.join(out_dir, 'label_names.txt'), 'w') as f:
                for lbl_name in label_names:
                    f.write(lbl_name + '\n')
 
            warnings.warn('info.yaml is being replaced by label_names.txt')
            info = dict(label_names=label_names)
            with open(osp.join(out_dir, 'info.yaml'), 'w') as f:
                yaml.safe_dump(info, f, default_flow_style=False)
 
            print('Saved to: %s' % out_dir)
if __name__ == '__main__':
    main()

将之前标注好的json文件单独提取出来,放在一个目录下,然后进入我们批量处理的环境中,也就是执行把jaso->dataset的目录:D:\Anaconda\envs\labelme\Scripts
在这里插入图片描述
这个目录下有执行程序:
.在这里插入图片描述
下面就可以进行json文件批量处理了,exe程序后边是之前的json单独建立的目录

labelme_json_to_dataset.exe D:\Spyder\label_dataset

在这里插入图片描述
成功执行后结果如下图,其保存的地址为相对地址,就是在D:\Anaconda\envs\labelme\Scripts下
在这里插入图片描述
如果安装的labelme版本是3.16.2的,应该不会有问题;有异常抛出的话,大概率是版本不兼容,建议重新创建环境安装

OVER

参考:
大神源码:实现labelme批量json_to_dataset方法
哔哩哔哩小哥讲解

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/194896.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • 哪些线程是安全的_redis是线程安全的吗

    哪些线程是安全的_redis是线程安全的吗Java中平时用的最多的map就是hashmap但是它却是线程不安全的。那除了hashmap还有哪些常见的线程安全的map?1.hashtableMap<String,Object>hashtable=newHashtable<String,Object>();这是所有人最先想到的,那为什么她是线程安全的?那就看看她的源码,我们可以看出我们常用的put,get,…

  • Linux下搭建FTP服务器教程

    Linux下搭建FTP服务器教程一、基本安装1.运行以下命令安装vsftpd。yuminstall-yvsftpd2.运行以下命令打开及查看etc/vsftpdcd/etc/vsftpdls说明:/etc/vsftpd/vsftpd.conf是核心配置文件。/etc/vsftpd/ftpusers是黑名单文件,此文件里的用户不允许访问FTP服务器。/etc/vsftpd/user_list 是白名单文件,是…

  • 监控RuntimeException「建议收藏」

    监控RuntimeException「建议收藏」在线程提前终止的最主要原因就是RuntimeException,由于这些异常表示出现了某种编程错误或者其他不可修复的错误,因此它们通常不会被捕获。它们不会在调用栈中逐层传递,而是默认地在控制台中输出栈追踪信息,并终止线程我们可以通过实现java.lang.Thread.UncaughtExceptionHandler接口来获取RuntimeException异常的信息。

  • 《前端运维》二、Nginx–4代理、负载均衡与其他

    一、代理服务比较容易理解吧,简单来说。客户端访问服务器并不是直接访问的,而是通过中间代理服务器,代理服务器再去访问服务器。就像一个中转站一样,无论什么,只要从客户端到服务器,你就要通过我。一)正向

  • Spring源码阅读指南_redis编译安装

    Spring源码阅读指南_redis编译安装1.前言:经过多次拉取Spring源码编译失败经历,一下抓取配置编译过程各个软件版本可能有影响因此先做以记录(时间不同也会导致版本出入要注意)Idea:2020.1.1(参考文献博主2019.3.3版本也可)插件:maven(3.6.3)(未用到)Gradle(4.10.3)Kotlin(idea内装)JDK:原机安装1.8版本需要11版本(后续会说明JDK1.8问题)注:流程可能较长,源码拉取编译不易,耐心阅读2.流程2.1抓取Spring源码GITHUB网址:https://gi

  • oracle listagg限制4000 varchar 使用xmlagg解决[通俗易懂]

    oracle listagg限制4000 varchar 使用xmlagg解决[通俗易懂]由于在使用中listagg中的字段值拼接起来后长度超过4000,报以下错误:经查询发现是listagg结果长度限制为Varchar4000,帮改为以下方式解决:使用xmlagg:selectrtrim(xmlagg(XMLELEMENT(e,N,’,’).EXTRACT(‘//text()’)).GetClobVal(),’,’) fromtest_name;标准如下…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号