大家好,又见面了,我是你们的朋友全栈君。如果您正在找激活码,请点击查看最新教程,关注关注公众号 “全栈程序员社区” 获取激活教程,可能之前旧版本教程已经失效.最新Idea2022.1教程亲测有效,一键激活。
Jetbrains全系列IDE使用 1年只要46元 售后保障 童叟无欺
[ 克莱茵瓶&莫比乌斯带]
在1882 年,著名数学家菲立克斯·克莱因(Felix Klein) 发现了后来以他的名字命名的著名“瓶子”。这是一个象球面那样封闭的(也就是说没有边)曲面,但是它却只有一个面。在图片上我们看到,克莱因瓶的确就象是一个瓶子。但是它没有瓶底,它的瓶颈被拉长,然后似乎是穿过了瓶壁,最后瓶颈和瓶底圈连在了一起。如果瓶颈不穿过瓶壁而从另一边和瓶底圈相连的话,我们就会得到一个轮胎面。
[ 转自铁血社区 http://bbs.tiexue.net/ ]
我们可以说一个球有两个面——外面和内面,如果一只蚂蚁在一个球的外表面上爬行,那么如果它不在球面上咬一个洞,就无法爬到内表面上去。轮胎面也是一样,有内外表面之分。但是克莱因瓶却不同,我们很容易想象,一只爬在“瓶外”的蚂蚁,可以轻松地通过瓶颈而爬到“瓶内”去——事实上克莱因瓶并无内外之分!在数学上,我们称克莱因瓶是一个不可定向的二维紧致流型,而球面或轮胎面是可定向的二维紧致流型。
如果我们观察克莱因瓶的图片,有一点似乎令人困惑——克莱因瓶的瓶颈和瓶身是相交的,换句话说,瓶颈上的某些点和瓶壁上的某些点占据了三维空间中的同一个位置。但是事实却非如此。事实是:克莱因瓶是一个在四维空间中才可能真正表现出来的曲面,如果我们一定要把它表现在我们生活的三维空间中,我们只好将就点,只好把它表现得似乎是自己和自己相交一样。事实上,克莱因瓶的瓶颈是穿过了第四维空间再和瓶底圈连起来的,并不穿过瓶壁。这是怎么回事呢?
我们用扭节来打比方。看上面这个图形,如果我们把它看作平面上的曲线的话,那么它似乎自身相交,再一看似乎又断成了三截。但其实很容易明白,这个图形其实是三维空间中的曲线,它并不和自己相交,而且是连续不断的一条曲线。在平面上一条曲线自然做不到这样,但是如果有第三维的话,它就可以穿过第三维来避开和自己相交。只是因为我们要把它画在二维平面上时,只好将就一点,把它画成相交或者断裂了的样子。克莱因瓶也一样,这是一个事实上处于四维空间中的曲面。在我们这个三维空间中,即使是最高明的能工巧匠,也不得不把它做成自身相交的模样;就好象最高明的画家,在纸上画扭
结的时候也不得不把它们画成自身相交的模样。
· 从拓扑学角度上看,克莱因瓶可以定义为矩阵[0 ,1] × [0 ,1] ,边定义为 (0 ,y) ~ (1 ,y) 条件 0 ≤y ≤ 1 和 (x ,0) ~ (1-x ,1) 条件 0 ≤x ≤ 1 可以用图表示为
——->
[ 转自铁血社区 http://bbs.tiexue.net/ ]
^ ^
| |
<——
就像麦比乌斯带(又名:莫比乌斯带)一样,克莱因瓶没有定向性。但是与之不同的是,克莱因瓶是一个闭合的曲面,也就是说它没有边界。麦比乌斯带可以在三维的欧几里德空间中嵌入,克莱因瓶只能适用于四维空间。
克莱因瓶与麦比乌斯带 大家大概都知道麦比乌斯带。你可以把一条纸带的一段扭180 度,再和另一端粘起来来得到一条麦比乌斯带的模型。这也是一个只有一麦比乌斯带、一个面的曲面,但是和球面、轮胎面和克莱因瓶不同的是,它有边(注意,它只有一条边)。如果我们把两条麦比乌斯带沿着它们唯一的边粘合起来,你就得到了一个克莱因瓶(当然不要忘了,我们必须在四维空间中才能真正有可能完成这个粘合,否则的话就不得不把纸撕破一点)。同样地,如果把一个克莱因瓶适当地剪开来,我们就能得到两条麦比乌斯带。除了我们上面看到的克莱因瓶的模样,还有一种不太为人所知的“8字形”克莱因瓶。它看起来和上面的曲面完全不同,但是在四维空间中它们其实就是同一个曲面——克莱因瓶。
实际上,可以说克莱因瓶是一个三度的麦比乌斯带。我们知道,在平面上画一个圆,再在圆内放一样东西,假如在二度空间中将它拿出来,就不得不越过圆周。但在三度空间中,很容易不越过圆周就将其拿出来,放到圆外。将物体的轨迹连同原来的圆投影到二度空间中,就是一个“二维克莱因瓶”,即麦比乌斯带(这里的莫比乌斯带是指拓扑意义上的莫比乌斯带)。再设想一下,在我们的三度空间中,不可能在不打破蛋壳的前提下从鸡蛋中取出蛋黄,但在四度空间里却可以。将蛋黄的轨迹连同蛋壳投影在三度空间中,必然可以看到一个克莱因瓶。
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/194386.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...